

CLIMATEMASTER® PACKAGE GAS ELECTRIC UNIT FEATURING HOT GAS REHEAT TECHNOLOGY

RKNL-G

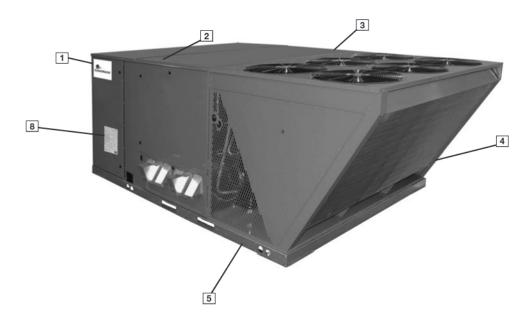
With Direct Digital Control (DDC) and VFD Technology Nominal Sizes 15-25 Tons [52.8-87.9 kW] ASHRAE 90.1-2010 Compliant

Manufactured for

ClimateMaster®

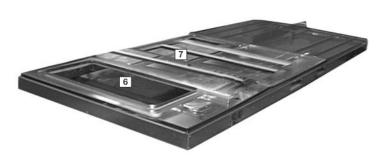
ClimateMaster.com

TABLE OF CONTENTS


Unit Features & Benefits	3-10
Model Number Identification	11
Options	12
Selection Procedure	13
General Data	
RKNL-G	14-19
General Data Notes	20
Gross Systems Performance Data	
RKNL-G	21-23
Gross Systems Performance Data - Reheat	
RKNL-G	24-26
Indoor Airflow Performance	
RKNL-G	27-32
Electrical Data	
RKNL-G	33-34
Dimensional Data	35-38
Accessories	39-53
Mechanical Specifications	54-60
Limited Warranty	61

RKNL-G STANDARD FEATURES INCLUDE:

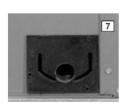
- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- · Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- Forkable base rails for easy handling and lifting.
- · Single point electrical connections.

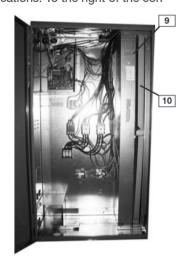

- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve, direct spark ignition, and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils.
- Factory Installed Direct Digital Control (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- Variable Frequency Drive (VFD).
- Reheat Dehumidification System.
- MERV 8 (RXMF-M08A22520) & MERV 13 (RXMF-M13A22520) filters are available as an accessory.

ClimateMaster Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large ClimateMaster label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage (4). Every ClimateMaster package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

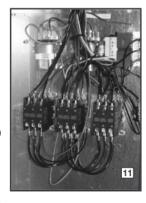
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other ClimateMaster-required reliability tests. ClimateMaster adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (18). Contractors can rest assured that when a ClimateMaster package unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).

Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the modeland serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-


trol box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

There is a blower contactor and compressor contactor for each compressor.

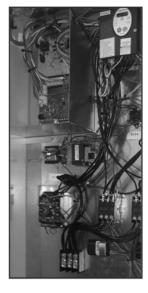
As part of the Direct Digital Control (CCD) system which allows real time monitoring and communication between rooftop units, the RKNL-G Package Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-G Package Gas/Electric with Direct Digital Control (CCD) is specifically designed to be applied in four distinct applications:

The RKNL-G is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between Direct Digital Control (CCD) and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RKNL-G is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between Direct Digital Control (CCD) and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.


The RKNL-G is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-G is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

RKNL-G

Factory installed VFD (variable frequency drive) supply fan optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from sudden inrush of

air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect (13) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

In the outdoor section are the external gauge ports. (14). With gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

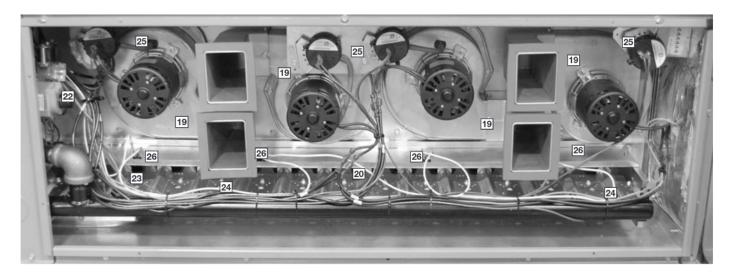
The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly

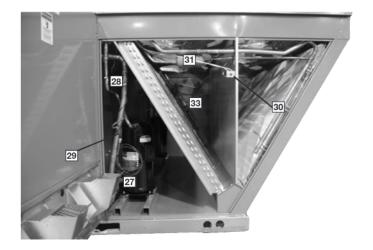
easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley ([15]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, ClimateMaster has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (16) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of troublefree operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

Also inside the blower compartment are the optional low-ambient controls ([17]). The low-ambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow and allows monitoring of the suction line temperature on the controller display.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly ([18]) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

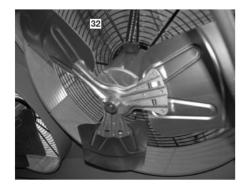

The furnace compartment contains the latest furnace technology on the market. The draft inducers (19) draw the flame from the ClimateMaster exclusive in-shot burners (20) into the aluminized tubular heat exchanger (21) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (22), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.



The direct spark igniter (23) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (24) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (25) to assure adequate combustion airflow before ignition.
- Rollout switches (26) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.



The compressor compartment houses the heartbeat of the unit. The scroll compressor (27) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (28) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (29) and high-pressure switches (30) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

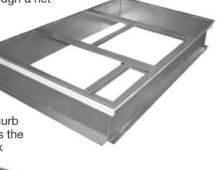
Each unit comes standard with filter dryer (31). The condenser fan motor (32) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (33) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

Each unit is designed for both downflow or horizontal applications (34) for job configuration flexibility. The return air compartment can also

Three models exists; two for downflow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow guick plug-in installation. The downflow economizer is also available as a factoryinstalled option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has

adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO2 setpoint. Barometric relief is standard on all economizers. The power exhaust is housed in the barometric relief opening and is easily

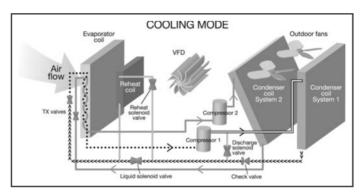
eliminated the need for linkage


slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller

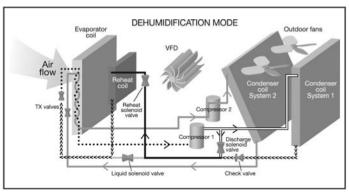
display or remotely through a network connection. The ClimateMaster roofcurb (36) is made for toolless


assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent curb sides (37), which makes the assembly process quick and easy.

Reheat System Features

Reheat is ClimateMaster's exclusive dehumidification package unit solution. It delivers maximum humidity control without compromising desired temperature set point for a high degree of comfort. Reheat maintains humidity levels at a desired set point when there's little or no demand for air conditioning. The Reheat rooftop unit is controlled by a thermostat and humidistat. The thermostat takes priority on single-stage system. When the thermostat is activated by temperatures that exceed it set point, Reheat operates like a standard rooftop unit. It can operate on first stage cooling when demand is low or at full capacity when air conditioning load is high. Unlike other rooftop or reheat units, Reheat is uniquely designed so the VFD will operate at a low speed, increasing moisture removal during first-stage cooling operation. This provides initial defense for controlling humidity. When temperature is desirable but humidity exceeds the humidistat set point, the Reheat rooftop unit initiates a dehumidification cycle using a combination of hot gas and sub-cooled liquid reheat and the VFD operates at low speed. During this cycle, the Reheat rooftop unit delivers dry, neutral air. On a two-stage system, it is possible for both a thermostat and humidistat to register readings above set point. Under this condition, the first-stage system runs in the dehumidification cycle, the second-stage system runs in a cooling cycle and the VFD operates on high speed. This provides dry conditioned air.

Figure 1 shows the refrigerant path during the normal cooling mode. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The superheated refrigerant vapor next carries the heat to the outside coil where the heat is then rejected and the refrigerant condenses into a subcooled liquid where the process repeats itself.

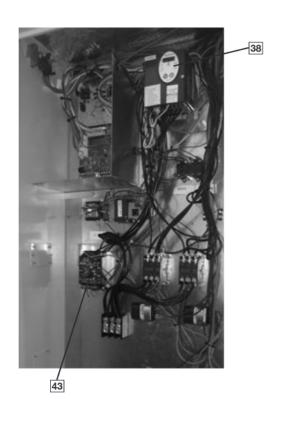


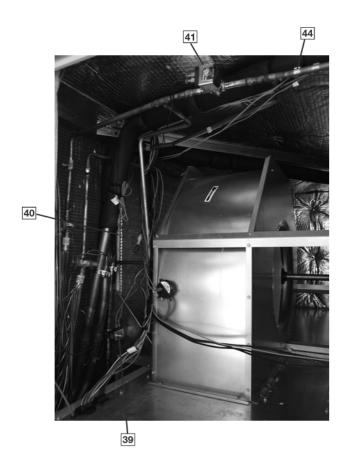
 ☐ HIGH TEMPERATURE VAPOR

TWO PHASE (LIQUID VAPOR MIX) <<<<< LIQUID •••••• LOW TEMPERATURE VAPOR

Figure 1

Figure 2 shows the refrigerant path during the reheat mode. When the reheat cycle is energized by the RTU-C, the reheat solenoid valve, upstream of the reheat coil opens. The liquid solenoid valve ahead of the TXV, closes. The discharge solenoid valve, in the compressor discharge line, opens. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The refrigerant next carries the heat to a parallel path between the outside condenser coil and a bypass circuit. Some of the heat is rejected outdoor. The ratio of heat rejected outdoors versus indoors is controlled by an outdoor fan motor controller (OFMC) that monitors the two-phase temperature and varies the fan speed. This 2-phase refrigerant vapor is then sent to the reheat coil. As the refrigerant travels through the reheat coil it condenses into a subcooled liquid where the process repeats itself.


☐ HIGH TEMPERATURE VAPOR


TWO PHASE (LIQUID VAPOR MIX)

••• LOW TEMPERATURE VAPOR

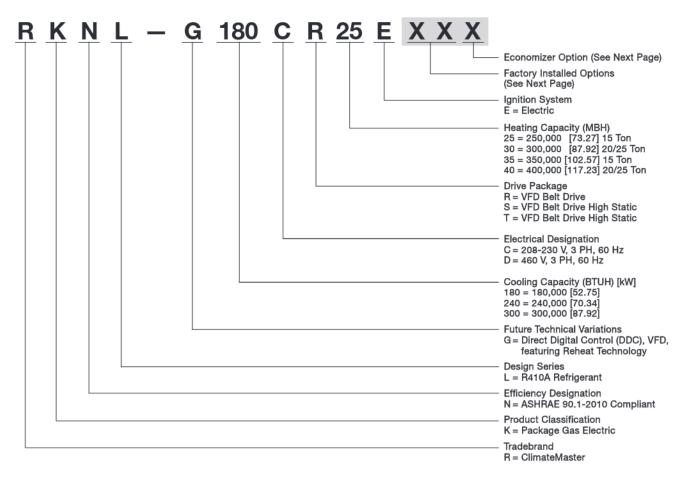

<<<< LIQUID

Figure 2

FACTORY INSTALLED OPTION CODES FOR RKNL-G (15-25 TON) [52.8-87.9 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		Х		
AH			X	
AR				Х
BF	Х		X	
BG	Х	X		
CY		Х	X	Х
JD	Х			Х
JB		X	X	
KA	Х	X		Х
DP	Х	Х	X	Х

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKNL-G (15-25 TON) [52.8-87.9 kW]

Option Code	Reheat Only	DDC Single Enthalpy Economizer * With Barometric Relief and Reheat	DDC Single Enthalpy Ecnomizer* With Barometric Relief and Smoke Detector and Reheat
K	Х		
M		X	
N			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKNL-G240CL40EXXX (where XX is factory installed option)

Example: No Options

RKNL-G240CR40EAAK

Example: No option with factory installed economizer

RKNL-G240CR40EAAM

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service disconnect, and stainless steel heat exchanger with no factory installed economizer RKNL-G240CR40ECYK

Example: Options same as above with factory installed economizer

RKNL-G240CR40ECYM

^{*}Downflow economizer only.

To select an RKNL-G Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example: Voltage-208/240V - 3 Phase - 60 Hz Total Cooling Capacity— 205,000 BTUH [60.0 kW] Sensible Cooling Capacity-155,000 BTUH [45.4 kW] 235,000 BTUH [68.8 kW] Heating Capacity-*Condenser Entering Air-95°F [35.0°C] DB *Evaporator Mixed Air Entering-65°F [18.3°C] WB 78°F [25.6°C] DB 7200 CFM [3398 L/s] *Indoor Air Flow (vertical)— 0.70 in. WG [.17 kPa] *External Static Pressure—

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

192,550 + (1.10 x 7,200 x (1 – 0.11) x (78 – 80)) Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,250 \times 0.99 = 235,868 \text{ BTUH } [69.06 \text{ kW}]$ Sensible Capacity = $178,452 \times 0.96 = 171,314 \text{ BTUH } [50.16 \text{ kW}]$ Power Input = $18,200 \times 0.99 = 18,018 \text{ Watts}$

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKNL-G240CR30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RKNL- Series	G180CR25E	G180CR35E	G180CS25E	G180CS35E
Cooling Performance ¹				CONTINUED →
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER/SEER ²	10.8/NA	10.8/NA	10.8/NA	10.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
Net Latent Capacity Btu [kW]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
IEER3	14	14	14	14
Net System Power kW	15.93	15.93	15.93	15.93
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Re-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor RPM	3 1725	3 1725	5 1725	5 1725
Motor RPM Motor Frame Size	1725 56	1725 56	1725 184	1725 184
Filter—Type			Disposable	Disposable
Furnished	Disposable Yes	Disposable Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]
Weights	200/211 [04///0002]	200/211 [04///0002]	200/211 [04///0002]	200/211 [04///0002]
Net Weight lbs. [kg]	2038 [924]	2051 [930]	2067 [938]	2080 [943]
Ship Weight lbs. [kg]	2164 [982]	2177 [987]	2193 [995]	2206 [1001]
See Page 20 for Notes.	2.0.[002]	2 [001]		nates Metric Conversions

Model RKNL- Series	G180DR25E	G180DR35E	G180DS25E	G180DS35E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER/SEER ²	10.8/NA	10.8/NA	10.8/NA	10.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
Net Latent Capacity Btu [kW]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
IEER3	14	14	14	14
Net System Power kW	15.93	15.93	15.93	15.93
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,250/202,500 [29,67/59,33]	141.750/283.500 [41.53/83.06]	101,500/203,000 [29,74/59,48]	143.250/286.500 [41.97/83.94]
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Re-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]
Weights	<u> </u>		<u> </u>	<u> </u>
Net Weight Ibs. [kg]	2038 [924]	2051 [930]	2067 [938]	2080 [943]
Ship Weight lbs. [kg]	2164 [982]	2177 [987]	2193 [995]	2206 [1001]
See Page 20 for Notes.	-	-		nates Metric Conversions

Model RKNL- Series	G240CR30E	G240CR40E	G240CS30E	G240CS40E	
Cooling Performance ¹				CONTINUED -	
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	
EER/SEER2	10.8/NA	10.8/NA	10.8/NA	10.8/NA	
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	
IEER3	14	14	14	14	
Net System Power kW	21.11	21.11	21.11	21.11	
eating Performance (Gas) ⁴					
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150.000/300.000 [43.95/87.9]	200.000/400.000 [58.6/117.2]	150.000/300.000 [43.95/87.9]	200.000/400.000 [58.6/117	
Heating Output Btu [kW] (1st Stage / 2nd Stage)					
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	81	81	
No. Burners	12	14	12	14	
No. Stages	2	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]	
ompressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]	
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll	
utdoor Sound Rating (dB) ⁵	91	91	91	91	
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
	Rifled		Rifled		
Tube Size in James OD		Rifled		Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]	
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
utdoor Fan—Type	Propeller	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	
Motor RPM	1075	1075	1075	1075	
	FC Centrifugal		FC Centrifugal		
door Fan—Type	-	FC Centrifugal	-	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds	Multiple	Multiple	Multiple	Multiple	
No. Motors	1	1	1	1	
Motor HP	5	5	7 1/2	7 1/2	
Motor RPM	1725	1725	1725	1725	
Motor Frame Size	184	184	213	213	
lter—Type	Disposable	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508	
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	
/eights					
Net Weight lbs. [kg]	2369 [1075]	2383 [1081]	2407 [1092]	2421 [1098]	
Ship Weight lbs. [kg]	2495 [1132]	2509 [1138]	2533 [1149]	2547 [1155]	
					

See Page 20 for Notes.

Model RKNL- Series	G240DR30E	G240DR40E	G240DS30E	G240DS40E	
Cooling Performance ¹				CONTINUED	
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	
EER/SEER2	10.8/NA	10.8/NA	10.8/NA	10.8/NA	
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	
IEER3	14	14	14	14	
Net System Power kW	21.11	21.11	21.11	21.11	
leating Performance (Gas) ⁴					
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.	
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.9	
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	81	81	
No. Burners	12	14	12	14	
No. Stages	2	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]	
Compressor	5.1.0 [1.0]	50 [1.0]	5.1.0 [1.0]	5 0 [1.0]	
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ⁵	91	91	91	91	
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Re-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]	
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	
Motor RPM	1075	1075	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds	Multiple	Multiple	Multiple	Multiple	
No. Motors	1	1	1	1	
Motor HP	5	5	7 1/2	7 1/2	
Motor RPM	1725	1725	1725	1725	
Motor Frame Size	184	184	184	213	
ilter—Type	Disposable	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	
Weights					
Net Weight Ibs. [kg]	2369 [1075]	2389 [1084]	2407 [1092]	2421 [1098]	
Ship Weight lbs. [kg]	2495 [1132]	2515 [1141]	2533 [1149]	2547 [1155]	
omb moidir ing. [va]	2780 [1102]	2010 [1141]	2000 [1140]	2047 [1100]	

See Page 20 for Notes.

Model RKNL- Series	G300CR30E	G300CR40E	G300CS30E	G300CS40E
ooling Performance ¹		<u></u>		CONTINUED
Gross Cooling Capacity Btu [kW]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]
EER/SEER ²	9.8/NA	9.8/NA	9.8/NA	9.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]
AHRI Net Cooling Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]
Net Sensible Capacity Btu [kW]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]
IEER3	13	13	13	13
Net System Power kW	29.18	29.18	29.18	29.18
eating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.9
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	15-45 [8.3-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	25-45 [13.9-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
mpressor	50 [.0]	50 [1.0]	50 [10]	50 [1.0]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
itdoor Sound Rating (dB) ⁵	91	91	91	91
itdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	
•				TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	10	10
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	213	215	215
lter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]
eights		-		
Net Weight Ibs. [kg]	2468 [1119]	2482 [1126]	2479 [1124]	2493 [1131]
Ship Weight lbs. [kg]	2594 [1177]	2608 [1183]	2605 [1182]	2619 [1188]
ee Page 20 for Notes.	=>11	[]		inates Metric Convers

See Page 20 for Notes.

Model RKNL- Series	G300DR30E	G300DR40E	G300DS30E	G300DS40E
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]
EER/SEER2	9.8/NA	9.8/NA	9.8/NA	9.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]
AHRI Net Cooling Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]
Net Sensible Capacity Btu [kW]	206100 [60.40]	206100 [60.40]	206100 [60.40]	206100 [60.40]
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 23.41]
IEER3	13	13	13	13
Net System Power kW	29.18	29.18	29.18	29.18
leating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	15-45 [8.3-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
te-Heat Coil—Fin Type	<u> </u>	<u> </u>	<u> </u>	
	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	10	10
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	213	215	215
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(N0.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]
Neights				
Net Weight lbs. [kg]	2468 [1119]	2482 [1126]	2479 [1124]	2493 [1131]
Ship Weight lbs. [kg]	2594 [1177]	2608 [1183]	2605 [1182]	2619 [1188]
See Page 20 for Notes.			[] Design	nates Metric Conversio

See Page 20 for Notes.

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 210/240 or 360.
- 4. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- 6. 25 ton model is outside the scope of AHRI Standard 340/360.

GROSS SYSTEMS PERFORMANCE DATA-G180

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
<u> </u>		DR ①	.12	.08	.04	.12	.08	.04	.12	.08	.04
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	229.8 [67.3] 134.3 [39.4] 12.6	220.9 [64.7] 121.8 [35.7] 12.3	213.5 [62.5] 111.2 [32.6] 12.1	214.3 [62.8] 165.1 [48.4] 12.4	206.0 [60.4] 149.7 [43.9] 12.2	199.0 [58.3] 136.7 [40.1] 12.0	205.3 [60.1] 189.9 [55.6] 12.2	197.4 [57.8] 172.2 [50.5] 12.0	190.7 [55.9] 157.2 [46.1] 11.8
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	225.5 [66.1] 132.1 [38.7] 13.2	216.8 [63.5] 119.8 [35.1] 12.9	209.4 [61.4] 109.4 [32.1] 12.7	209.9 [61.5] 163.0 [47.8] 13.0	201.9 [59.2] 147.8 [43.3] 12.7	195.0 [57.1] 134.9 [39.5] 12.5	200.9 [58.9] 187.7 [55.0] 12.8	193.2 [56.6] 170.2 [49.9] 12.6	186.7 [54.7] 155.4 [45.5] 12.4
U T D O	85 [29.4]	Total BTUH (kW) Sens BTUH (kW) Power	220.8 [64.7] 129.8 [38.1] 13.8	212.3 [62.2] 117.7 [34.5] 13.5	205.1 [60.1] 107.5 [31.5] 13.3	205.3 [60.2] 160.7 [47.1] 13.6	197.4 [57.8] 145.7 [42.7] 13.4	190.7 [55.9] 133.0 [39.0] 13.1	196.3 [57.5] 185.4 [54.3] 13.4	188.7 [55.3] 168.1 [49.3] 13.2	182.3 [53.4] 153.5 [45.0] 13.0
O R D R	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	215.8 [63.2] 127.4 [37.3] 14.5	207.5 [60.8] 115.5 [33.9] 14.2	200.4 [58.7] 105.5 [30.9] 14.0	200.3 [58.7] 158.2 [46.4] 14.3	192.5 [56.4] 143.5 [42.0] 14.0	186.0 [54.5] 131.0 [38.4] 13.8	191.3 [56.0] 183.0 [53.6] 14.1	183.9 [53.9] 165.9 [48.6] 13.9	177.7 [52.1] 151.5 [44.4] 13.6
Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	210.4 [61.7] 124.8 [36.6] 15.2	202.3 [59.3] 113.2 [33.2] 14.9	195.5 [57.3] 103.3 [30.3] 14.7	194.9 [57.1] 155.6 [45.6] 15.1	187.4 [54.9] 141.1 [41.3] 14.8	181.0 [53.1] 128.8 [37.7] 14.5	185.9 [54.5] 180.4 [52.9] 14.9	178.7 [52.4] 163.6 [47.9] 14.6	172.7 [50.6] 149.3 [43.8] 14.4
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	204.7 [60.0] 122.0 [35.8] 16.0	196.9 [57.7] 110.7 [32.4] 15.7	190.2 [55.7] 101.0 [29.6] 15.5	189.2 [55.4] 152.9 [44.8] 15.8	181.9 [53.3] 138.6 [40.6] 15.5	175.8 [51.5] 126.5 [37.1] 15.3	180.2 [52.8] 177.6 [52.0] 15.7	173.3 [50.8] 161.1 [47.2] 15.4	167.4 [49.1] 147.0 [43.1] 15.1
M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	198.7 [58.2] 119.1 [34.9] 16.9	191.0 [56.0] 108.0 [31.7] 16.5	184.6 [54.1] 98.6 [28.9] 16.3	183.2 [53.7] 149.9 [43.9] 16.7	176.1 [51.6] 136.0 [39.8] 16.4	170.1 [49.9] 124.1 [36.4] 16.1	174.2 [51.0] 174.2 [51.0] 16.5	167.5 [49.1] 158.4 [46.4] 16.2	161.8 [47.4] 144.6 [42.4] 15.9
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	192.3 [56.4] 116.1 [34.0] 17.8	184.9 [54.2] 105.2 [30.8] 17.4	178.6 [52.3] 96.1 [28.2] 17.1	176.8 [51.8] 146.9 [43.0] 17.6	170.0 [49.8] 133.2 [39.0] 17.3	164.2 [48.1] 121.6 [35.6] 17.0	167.8 [49.2] 167.8 [49.2] 17.4	161.3 [47.3] 155.6 [45.6] 17.1	155.8 [45.7] 142.1 [41.6] 16.8
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	185.6 [54.4] 112.9 [33.1] 18.7	178.4 [52.3] 102.3 [30.0] 18.4	172.4 [50.5] 93.4 [27.4] 18.1	170.0 [49.8] 143.7 [42.1] 18.5	163.5 [47.9] 130.3 [38.2] 18.2	158.0 [46.3] 118.9 [34.9] 17.9	161.0 [47.2] 161.0 [47.2] 18.4	154.8 [45.4] 152.7 [44.8] 18.0	149.6 [43.8] 139.4 [40.9] 17.7
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	178.5 [52.3] 109.5 [32.1] 19.7	171.6 [50.3] 99.3 [29.1] 19.3	165.8 [48.6] 90.6 [26.6] 19.0	163.0 [47.8] 140.3 [41.1] 19.5	156.7 [45.9] 127.2 [37.3] 19.2	151.4 [44.4] 116.2 [34.0] 18.9	154.0 [45.1] 154.0 [45.1] 19.4	148.0 [43.4] 148.0 [43.4] 19.0	143.0 [41.9] 136.7 [40.0] 18.7
	125 [51.7]	Total BTUH (kW) Sens BTUH (kW) Power	171.1 [50.1] 106.0 [31.1] 20.8	164.5 [48.2] 96.1 [28.2] 20.4	158.9 [46.6] 87.7 [25.7] 20.0	155.5 [45.6] 136.8 [40.1] 20.6	149.6 [43.8] 124.0 [36.3] 20.2	144.5 [42.3] 113.2 [33.2] 19.9	146.5 [42.9] 146.5 [42.9] 20.4	140.9 [41.3] 140.9 [41.3] 20.0	136.1 [39.9] 133.7 [39.2] 19.7

DR —Depression ratio
dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power ---KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-G240

					ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CF	M [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
		DR ①	.12	.08	.04	.12	.08	.04	.12	.08	.04
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	286.7 [84.0] 167.1 [49.0] 15.5	274.6 [80.5] 150.1 [44.0] 15.1	266.0 [78.0] 138.1 [40.5] 14.9	269.6 [79.0] 208.0 [61.0] 15.3	258.2 [75.7] 186.8 [54.8] 15.0	250.1 [73.3] 171.9 [50.4] 14.7	257.6 [75.5] 240.7 [70.5] 15.1	246.7 [72.3] 216.2 [63.4] 14.8	239.0 [70.0] 198.9 [58.3] 14.5
0	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	284.1 [83.3] 166.1 [48.7] 16.2	272.1 [79.7] 149.2 [43.7] 15.9	263.6 [77.3] 137.3 [40.2] 15.6	267.0 [78.2] 207.0 [60.7] 16.0	255.7 [74.9] 186.0 [54.5] 15.7	247.7 [72.6] 171.1 [50.1] 15.5	255.0 [74.7] 239.7 [70.2] 15.9	244.2 [71.6] 215.3 [63.1] 15.5	236.6 [69.3] 198.1 [58.1] 15.3
Ŭ T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	280.7 [82.3] 164.7 [48.3] 17.1	268.8 [78.8] 147.9 [43.4] 16.7	260.5 [76.3] 136.1 [39.9] 16.4	263.6 [77.2] 205.6 [60.3] 16.9	252.4 [74.0] 184.7 [54.1] 16.5	244.6 [71.7] 169.9 [49.8] 16.3	251.6 [73.7] 238.3 [69.8] 16.7	241.0 [70.6] 214.1 [62.7] 16.3	233.4 [68.4] 196.9 [57.7] 16.1
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	276.4 [81.0] 162.9 [47.7] 17.9	264.8 [77.6] 146.3 [42.9] 17.5	256.5 [75.2] 134.6 [39.4] 17.3	259.3 [76.0] 203.8 [59.7] 17.7	248.3 [72.8] 183.1 [53.7] 17.4	240.6 [70.5] 168.4 [49.4] 17.1	247.3 [72.5] 236.5 [69.3] 17.5	236.9 [69.4] 212.4 [62.3] 17.2	229.5 [67.3] 195.4 [57.3] 16.9
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	271.4 [79.5] 160.7 [47.1] 18.8	259.9 [76.2] 144.3 [42.3] 18.5	251.8 [73.8] 132.8 [38.9] 18.2	254.2 [74.5] 201.6 [59.1] 18.7	243.5 [71.3] 181.1 [53.1] 18.3	235.9 [69.1] 166.6 [48.8] 18.0	242.2 [71.0] 234.3 [68.7] 18.5	232.0 [68.0] 210.4 [61.7] 18.1	224.8 [65.9] 193.6 [56.7] 17.8
L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	265.4 [77.8] 158.0 [46.3] 19.8	254.2 [74.5] 141.9 [41.6] 19.4	246.3 [72.2] 130.6 [38.3] 19.1	248.3 [72.8] 198.9 [58.3] 19.6	237.8 [69.7] 178.7 [52.4] 19.2	230.4 [67.5] 164.4 [48.2] 18.9	236.3 [69.3] 231.6 [67.9] 19.4	226.3 [66.3] 208.1 [61.0] 19.0	219.3 [64.3] 191.4 [56.1] 18.7
T E M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	258.7 [75.8] 154.9 [45.4] 20.8	247.8 [72.6] 139.2 [40.8] 20.4	240.0 [70.3] 128.0 [37.5] 20.1	241.6 [70.8] 195.8 [57.4] 20.7	231.3 [67.8] 175.9 [51.6] 20.2	224.1 [65.7] 161.8 [47.4] 19.9	229.6 [67.3] 228.5 [67.0] 20.5	219.9 [64.4] 205.3 [60.2] 20.0	213.0 [62.4] 188.9 [55.3] 19.7
A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	251.1 [73.6] 151.4 [44.4] 21.9	240.5 [70.5] 136.0 [39.9] 21.5	233.0 [68.3] 125.1 [36.7] 21.1	234.0 [68.6] 192.3 [56.4] 21.7	224.1 [65.7] 172.8 [50.6] 21.3	217.1 [63.6] 158.9 [46.6] 21.0	222.0 [65.1] 222.0 [65.1] 21.5	212.6 [62.3] 202.1 [59.2] 21.1	206.0 [60.4] 186.0 [54.5] 20.8
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	242.7 [71.1] 147.5 [43.2] 23.1	232.5 [68.1] 132.5 [38.8] 22.6	225.2 [66.0] 121.9 [35.7] 22.2	225.6 [66.1] 188.4 [55.2] 22.9	216.0 [63.3] 169.3 [49.6] 22.4	209.3 [61.3] 155.7 [45.6] 22.0	213.6 [62.6] 213.6 [62.6] 22.7	204.6 [60.0] 198.6 [58.2] 22.2	198.2 [58.1] 182.7 [53.5] 21.9
[کی	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	233.5 [68.4] 143.2 [41.9] 24.2	223.6 [65.5] 128.6 [37.7] 23.7	216.6 [63.5] 118.3 [34.7] 23.4	216.3 [63.4] 184.1 [53.9] 24.0	207.2 [60.7] 165.4 [48.5] 23.5	200.7 [58.8] 152.1 [44.6] 23.2	204.4 [59.9] 204.4 [59.9] 23.9	195.7 [57.4] 194.7 [57.1] 23.4	189.6 [55.6] 179.1 [52.5] 23.0
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	223.4 [65.5] 138.4 [40.6] 25.5	214.0 [62.7] 124.3 [36.4] 24.9	207.3 [60.7] 114.4 [33.5] 24.69	206.3 [60.4] 179.3 [52.5] 25.3	197.6 [57.9] 161.1 [47.2] 24.8	191.4 [56.1] 148.2 [43.4] 24.4	194.3 [56.9] 194.3 [56.9] 25.1	186.1 [54.5] 186.1 [54.5] 24.6	180.3 [52.8] 175.2 [51.3] 24.2

DR —Depression ratio

Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

dbE —Entering air dry bulb

wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

GROSS SYSTEMS PERFORMANCE DATA-G300

					ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	10615 [5010]	9650 [4554]	8202 [3871]	10615 [5010]	9650 [4554]	8202 [3871]	10615 [5010]	9650 [4554]	8202 [3871]
		DR ①	.13	.11	.08	.13	.11	.08	.13	.11	.08
	75 [23.9]	Total BTUH (kW) Sens BTUH (kW) Power	21.3	337.4 [98.9] 196.5 [57.6] 21.2	328.2 [96.2] 182.7 [53.5] 20.9	326.8 [95.8] 244.1 [71.5] 21.2	321.0 [94.1] 233.3 [68.4] 21.0	312.2 [91.5] 216.9 [63.6] 20.7	315.2 [92.4] 274.9 [80.5] 21.0	309.5 [90.7] 262.6 [77.0] 20.8	301.1 [88.2] 244.2 [71.6] 20.5
0	80 [26.7]	Total BTUH (kW) Sens BTUH (kW) Power	341.0 [99.9] 204.7 [60.0] 22.1	334.9 [98.1] 195.6 [57.3] 21.9	325.8 [95.5] 181.9 [53.3] 21.6	324.3 [95.0] 243.2 [71.3] 21.9	318.5 [93.3] 232.4 [68.1] 21.7	309.8 [90.8] 216.1 [63.3] 21.4	312.6 [91.6] 274.0 [80.3] 21.7	307.0 [90.0] 261.7 [76.7] 21.5	298.7 [87.5] 243.4 [71.3] 21.2
U T D O	85 [29.4]	Sens BTUH [kW] Power	22.9	331.6 [97.2] 194.4 [57.0] 22.7	322.6 [94.5] 180.7 [53.0] 22.4	321.0 [94.1] 241.9 [70.9] 22.7	315.2 [92.4] 231.1 [67.7] 22.5	306.6 [89.9] 214.9 [63.0] 22.2	309.3 [90.6] 272.6 [79.9] 22.5	303.8 [89.0] 260.5 [76.3] 22.3	295.5 [86.6] 242.2 [71.0] 22.0
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	333.5 [97.7] 201.7 [59.1] 23.8	327.6 [96.0] 192.7 [56.5] 23.6	318.6 [93.4] 179.2 [52.5] 23.2	316.8 [92.8] 240.2 [70.4] 23.6	311.1 [91.2] 229.5 [67.2] 23.4	302.7 [88.7] 213.4 [62.5] 23.1	305.1 [89.4] 270.9 [79.4] 23.4	299.7 [87.8] 258.9 [75.9] 23.2	291.5 [85.4] 240.7 [70.5] 22.9
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power		322.7 [94.6] 190.7 [55.9] 24.5	313.9 [92.0] 177.4 [52.0] 24.1	311.8 [91.4] 238.1 [69.8] 24.5	306.3 [89.8] 227.5 [66.7] 24.3	297.9 [87.3] 211.5 [62.0] 24.0	300.2 [88.0] 268.8 [78.8] 24.3	294.8 [86.4] 256.8 [75.3] 24.1	286.8 [84.0] 238.9 [70.0] 23.8
L B	100 [37.8]		322.8 [94.6] 197.1 [57.8] 25.6	317.0 [92.9] 188.3 [55.2] 25.4	308.4 [90.4] 175.1 [51.3] 25.1	306.1 [89.7] 235.6 [69.0] 25.5	300.6 [88.1] 225.1 [66.0] 25.2	292.4 [85.7] 209.3 [61.3] 24.9	294.4 [86.3] 266.3 [78.0] 25.3	289.1 [84.7] 254.5 [74.6] 25.0	281.3 [82.4] 236.6 [69.3] 24.7
T E M P E R	105 [40.6]		316.2 [92.7] 194.2 [56.9] 26.7	310.6 [91.0] 185.6 [54.4] 26.4	302.1 [88.5] 172.6 [50.6] 26.1	299.5 [87.8] 232.7 [68.2] 26.5	294.2 [86.2] 222.3 [65.1] 26.2	286.1 [83.8] 206.8 [60.6] 25.9	287.8 [84.3] 263.4 [77.2] 26.3	282.7 [82.8] 251.7 [73.8] 26.1	275.0 [80.6] 234.1 [68.6] 25.7
A T U	110 [43.3]		308.8 [90.5] 190.9 [55.9] 27.7	303.3 [88.9] 182.4 [53.5] 27.5	295.0 [86.5] 169.6 [49.7] 27.1	292.1 [85.6] 229.4 [67.2] 27.5	286.9 [84.1] 219.2 [64.2] 27.3	279.1 [81.8] 203.8 [59.7] 26.9	280.4 [82.2] 260.1 [76.2] 27.3	275.4 [80.7] 248.5 [72.8] 27.1	267.9 [78.5] 231.1 [67.7] 26.8
R E °F [°C]	115 [46.1]	Sens BTUH [kW] Power	28.8	295.3 [86.5] 178.9 [52.4] 28.6	287.2 [84.2] 166.4 [48.8] 28.2	283.9 [83.2] 225.7 [66.1] 28.7	278.8 [81.7] 215.7 [63.2] 28.4	271.2 [79.5] 200.6 [58.8] 28.0	272.2 [79.8] 256.5 [75.2] 28.5	267.4 [78.4] 245.0 [71.8] 28.2	260.1 [76.2] 227.9 [66.8] 27.8
[کی	120 [48.9]	Sens BTUH [kW] Power	30.0	286.4 [83.9] 175.0 [51.3] 29.7	278.6 [81.6] 162.7 [47.7] 29.4	274.9 [80.6] 221.6 [64.9] 29.8	270.0 [79.1] 211.8 [62.1] 29.6	262.6 [77.0] 196.9 [57.7] 29.2	263.2 [77.1] 252.4 [74.0] 29.6	258.5 [75.8] 241.1 [70.7] 29.4	251.5 [73.7] 224.2 [65.7] 29.0
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	281.8 [82.6] 178.7 [52.4] 31.2	276.8 [81.1] 170.7 [50.0] 31.0	269.2 [78.9] 158.8 [46.5] 30.5	265.1 [77.7] 217.2 [63.6] 31.0	260.4 [76.3] 207.5 [60.8] 30.8	253.3 [74.2] 193.0 [56.5] 30.4	253.4 [74.3] 247.9 [72.6] 30.9	248.9 [72.9] 236.8 [69.4] 30.6	242.1 [70.9] 220.3 [64.5] 30.2

DR —Depression ratio
dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power ---KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1-DR) x (dbE-80)].

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) - G180

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	3600 [1699]	2950 [1392]	2400 [1133]	3600 [1699]	2950 [1392]	2400 [1133]	3600 [1699]	2950 [1392]	2400 [1133]
O U T D	60 [15.6]	Total BTUH (kW) Sens BTUH (kW) Power	49.6 [14.5] 9.0 [2.6] 5.9	47.7 [14.0] 8.1 [2.4] 5.8	46.0 [13.5] 7.4 [2.2] 5.7	46.7 [13.7] 14.1 [4.1] 5.9	44.9 [13.2] 12.8 [3.8] 5.8	43.4 [12.7] 11.7 [3.4] 5.7	45.1 [13.2] 20.6 [6.0] 5.9	43.4 [12.7] 18.6 [5.5] 5.8	41.9 [12.3] 17.0 [5.0] 5.7
O R D	65 [18.3]	Total BTUH (kW) Sens BTUH (kW) Power	48.6 [14.2] 8.0 [2.4] 6.0	46.7 [13.7] 7.3 [2.1] 5.9	45.1 [13.2] 6.6 [1.9] 5.8	45.7 [13.4] 13.2 [3.9] 6.0	44.0 [12.9] 12.0 [3.5] 5.9	42.5 [12.5] 10.9 [3.2] 5.8	44.2 [12.9] 19.6 [5.7] 5.9	42.5 [12.4] 17.8 [5.2] 5.8	41.0 [12.0] 16.2 [4.8] 5.7
R Y B	70 [21.1]	Total BTUH (kW) Sens BTUH (kW) Power	47.5 [13.9] 7.1 [2.1] 6.1	45.7 [13.4] 6.4 [1.9] 6.0	44.1 [12.9] 5.9 [1.7] 5.9	44.7 [13.1] 12.2 [3.6] 6.1	43.0 [12.6] 11.1 [3.3] 6.0	41.5 [12.2] 10.1 [3.0] 5.9	43.1 [12.6] 18.7 [5.5] 6.0	41.4 [12.1] 16.9 [5.0] 5.9	40.0 [11.7] 15.4 [4.5] 5.8
U L B	75 [23.9]	Total BTUH (kW) Sens BTUH (kW) Power	46.4 [13.6] 6.1 [1.8] 6.2	44.6 [13.1] 5.6 [1.6] 6.1	43.1 [12.6] 5.1 [1.5] 6.0	43.5 [12.8] 11.3 [3.3] 6.2	41.9 [12.3] 10.2 [3.0] 6.1	40.4 [11.9] 9.4 [2.7] 6.0	42.0 [12.3] 17.7 [5.2] 6.1	40.3 [11.8] 16.1 [4.7] 6.0	39.0 [11.4] 14.7 [4.3] 5.9
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	45.2 [13.2] 5.2 [1.5] 6.3	43.4 [12.7] 4.7 [1.4] 6.2	42.0 [12.3] 4.3 [1.3] 6.1	42.3 [12.4] 10.3 [3.0] 6.3	40.7 [11.9] 9.4 [2.7] 6.2	39.3 [11.5] 8.6 [2.5] 6.1	40.7 [11.9] 16.7 [4.9] 6.2	39.2 [11.5] 15.2 [4.5] 6.1	37.8 [11.1] 13.9 [4.1] 6.0
A T URE	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	43.9 [12.9] 4.2 [1.2] 6.4	42.2 [12.4] 3.8 [1.1] 6.3	40.8 [11.9] 3.5 [1.0] 6.2	41.0 [12.0] 9.4 [2.7] 6.4	39.5 [11.6] 8.5 [2.5] 6.3	38.1 [11.2] 7.8 [2.3] 6.2	39.4 [11.6] 15.8 [4.6] 6.4	37.9 [11.1] 14.3 [4.2] 6.3	36.6 [10.7] 13.1 [3.8] 6.1
°F [°C]	90 [32.2]	Total BTUH (kW) Sens BTUH (kW) Power	42.5 [12.5] 3.2 [1.0] 6.6	40.9 [12.0] 2.9 [0.9] 6.5	39.5 [11.6] 2.7 [0.8] 6.4	39.7 [11.6] 8.4 [2.5] 6.6	38.1 [11.2] 7.6 [2.2] 6.4	36.8 [10.8] 7.0 [2.0] 6.3	38.1 [11.2] 14.8 [4.3] 6.5	36.6 [10.7] 13.4 [3.9] 6.4	35.4 [10.4] 12.3 [3.6] 6.3

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) — G180

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
O U T D	60 [15.6]	Total BTUH (kW) Sens BTUH (kW) Power	162.1 [47.5] 81.5 [23.9] 11.5	155.9 [45.7] 73.9 [21.7] 11.3	150.6 [44.1] 67.5 [19.8] 11.1	158.6 [46.5] 93.0 [27.3] 11.4	152.5 [44.7] 84.3 [24.7] 11.2	147.3 [43.2] 77.0 [22.6] 11.0	153.8 [45.1] 103.2 [30.2] 11.3	147.9 [43.3] 93.6 [27.4] 11.1	142.9 [41.9] 85.4 [25.0] 10.9
O O R	70 [21.1]	Total BTUH (kW) Sens BTUH (kW) Power	156.6 [45.9] 77.9 [22.8] 12.2	150.6 [44.1] 70.6 [20.7] 12.0	145.4 [42.6] 64.5 [18.9] 11.8	153.0 [44.8] 89.4 [26.2] 12.1	147.1 [43.1] 81.0 [23.7] 11.9	142.1 [41.7] 74.0 [21.7] 11.7	148.3 [43.5] 99.5 [29.2] 12.0	142.6 [41.8] 90.3 [26.5] 11.8	137.7 [40.4] 82.4 [24.1] 11.6
R Y B	80 [26.7]	Total BTUH (kW) Sens BTUH (kW) Power	148.4 [43.5] 71.8 [21.0] 13.0	142.6 [41.8] 65.1 [19.1] 12.8	137.8 [40.4] 59.4 [17.4] 12.6	144.8 [42.4] 83.3 [24.4] 12.9	139.2 [40.8] 75.5 [22.1] 12.7	134.5 [39.4] 68.9 [20.2] 12.5	140.1 [41.0] 93.4 [27.4] 12.8	134.7 [39.5] 84.7 [24.8] 12.6	130.1 [38.1] 77.3 [22.7] 12.4
U B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	137.5 [40.3] 63.2 [18.5] 13.9	132.2 [38.7] 57.3 [16.8] 13.7	127.7 [37.4] 52.3 [15.3] 13.5	133.9 [39.2] 74.7 [21.9] 13.9	128.8 [37.7] 67.7 [19.8] 13.6	124.4 [36.5] 61.8 [18.1] 13.4	129.2 [37.9] 84.9 [24.9] 13.8	124.2 [36.4] 76.9 [22.5] 13.5	120.0 [35.2] 70.2 [20.6] 13.3
M P E R	100 [37.8]	Total BTUH (kW) Sens BTUH (kW) Power	123.9 [36.3] 52.1 [15.3] 15.0	119.2 [34.9] 47.3 [13.9] 14.7	115.1 [33.7] 43.2 [12.6] 14.5	120.4 [35.3] 63.6 [18.6] 14.9	115.7 [33.9] 57.7 [16.9] 14.6	111.8 [32.8] 52.7 [15.4] 14.4	115.6 [33.9] 73.8 [21.6] 14.8	111.2 [32.6] 66.9 [19.6] 14.5	107.4 [31.5] 61.1 [17.9] 14.3
A T U R	110 [43.3]	Total BTUH (kW) Sens BTUH (kW) Power	107.7 [31.6] 38.6 [11.3] 16.2	103.6 [30.4] 35.0 [10.3] 15.9	100.1 [29.3] 32.0 [9.4] 15.6	104.2 [30.5] 50.1 [14.7] 16.1	100.2 [29.4] 45.4 [13.3] 15.8	96.8 [28.4] 41.5 [12.2] 15.5	99.4 [29.1] 60.3 [17.7] 16.0	95.6 [28.0] 54.7 [16.0] 15.7	92.4 [27.1] 49.9 [14.6] 15.4
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	88.9 [26.0] 22.6 [6.6] 17.4	85.4 [25.0] 20.5 [6.0] 17.1	82.5 [24.2] 18.7 [5.5] 16.8	85.3 [25.0] 34.1 [10.0] 17.4	82.0 [24.0] 30.9 [9.1] 17.0	79.2 [23.2] 28.2 [8.3] 16.8	80.6 [23.6] 44.3 [13.0] 17.3	77.5 [22.7] 40.1 [11.8] 16.9	74.8 [21.9] 36.7 [10.7] 16.7

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) - G240

_											
				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	63.5 [18.6] 10.7 [3.1] 8.3	60.8 [17.8] 9.6 [2.8] 8.2	58.9 [17.3] 8.8 [2.6] 8.0	60.1 [17.6] 15.0 [4.4] 8.3	57.6 [16.9] 13.5 [4.0] 8.1	55.8 [16.3] 12.4 [3.6] 8.0	58.5 [17.1] 29.1 [8.5] 8.3	56.0 [16.4] 26.1 [7.7] 8.1	54.3 [15.9] 24.0 [7.0] 8.0
O R D	65 [18.3]	Total BTUH (kW) Sens BTUH (kW) Power	61.8 [18.1] 9.0 [2.6] 8.4	59.2 [17.3] 8.1 [2.4] 8.3	57.3 [16.8] 7.4 [2.2] 8.1	58.4 [17.1] 13.3 [3.9] 8.4	55.9 [16.4] 12.0 [3.5] 8.2	54.2 [15.9] 11.0 [3.2] 8.1	56.8 [16.6] 27.4 [8.0] 8.4	54.4 [15.9] 24.6 [7.2] 8.2	52.7 [15.4] 22.7 [6.6] 8.1
R Y B	70 [21.1]	Total BTUH (kW) Sens BTUH (kW) Power	60.1 [17.6] 7.3 [2.1] 8.6	57.6 [16.9] 6.5 [1.9] 8.4	55.8 [16.4] 6.0 [1.8] 8.3	56.7 [16.6] 11.6 [3.4] 8.6	54.4 [15.9] 10.4 [3.1] 8.4	52.7 [15.4] 9.6 [2.8] 8.2	55.1 [16.2] 25.7 [7.5] 8.5	52.8 [15.5] 23.1 [6.8] 8.3	51.2 [15.0] 21.3 [6.2] 8.2
U L B	75 [23.9]	Total BTUH (kW) Sens BTUH (kW) Power	58.5 [17.2] 5.5 [1.6] 8.7	56.1 [16.4] 4.9 [1.4] 8.5	54.3 [15.9] 4.5 [1.3] 8.4	55.2 [16.2] 9.9 [2.9] 8.7	52.8 [15.5] 8.9 [2.6] 8.5	51.2 [15.0] 8.1 [2.4] 8.4	53.5 [15.7] 23.9 [7.0] 8.7	51.3 [15.0] 21.5 [6.3] 8.5	49.7 [14.6] 19.8 [5.8] 8.3
E M P E D	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	57.0 [16.7] 3.7 [1.1] 8.9	54.6 [16.0] 3.3 [1.0] 8.7	52.9 [15.5] 3.0 [0.9] 8.6	53.6 [15.7] 8.0 [2.4] 8.9	51.3 [15.0] 7.2 [2.1] 8.7	49.7 [14.6] 6.6 [1.9] 8.5	52.0 [15.2] 22.1 [6.5] 8.8	49.8 [14.6] 19.9 [5.8] 8.6	48.3 [14.1] 18.3 [5.4] 8.5
R A T U R E	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	55.5 [16.3] 1.8 [0.5] 9.1	53.2 [15.6] 1.6 [0.5] 8.9	51.5 [15.1] 1.5 [0.4] 8.7	52.1 [15.3] 6.1 [1.8] 9.0	49.9 [14.6] 5.5 [1.6] 8.9	48.4 [14.2] 5.1 [1.5] 8.7	50.5 [14.8] 20.2 [5.9] 9.0	48.4 [14.2] 18.2 [5.3] 8.8	46.9 [13.7] 16.7 [4.9] 8.7
°F [°C]	90 [32.2]	Total BTUH (kW) Sens BTUH (kW) Power	54.1 [15.9] -0.1 [0.0] 9.3	51.8 [15.2] -0.1 [0.0] 9.1	50.2 [14.7] -0.1 [0.0] 8.9	50.7 [14.9] 4.2 [1.2] 9.3	48.6 [14.2] 3.8 [1.1] 9.1	47.1 [13.8] 3.5 [1.0] 8.9	49.1 [14.4] 18.3 [5.4] 9.2	47.0 [13.8] 16.4 [4.8] 9.0	45.6 [13.4] 15.1 [4.4] 8.9

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) - G240

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
O U T D	60 [15.6]	Total BTUH (kW) Sens BTUH (kW) Power	192.6 [56.4] 88.3 [25.9] 14.1	184.4 [54.0] 79.3 [23.2] 13.8	178.7 [52.4] 72.9 [21.4] 13.6	187.7 [55.0] 102.9 [30.2] 14.0	179.7 [52.7] 92.5 [27.1] 13.7	174.1 [51.0] 85.1 [24.9] 13.5	184.2 [54.0] 118.4 [34.7] 14.0	176.4 [51.7] 106.3 [31.2] 13.7	170.9 [50.1] 97.8 [28.7] 13.5
O O R	70 [21.1]	Total BTUH (kW) Sens BTUH (kW) Power	186.2 [54.6] 86.1 [25.2] 14.9	178.4 [52.3] 77.4 [22.7] 14.5	172.8 [50.6] 71.2 [20.9] 14.3	181.4 [53.1] 100.8 [29.5] 14.8	173.7 [50.9] 90.5 [26.5] 14.5	168.3 [49.3] 83.3 [24.4] 14.2	177.9 [52.1] 116.2 [34.1] 14.7	170.4 [49.9] 104.4 [30.6] 14.4	165.0 [48.4] 96.1 [28.1] 14.2
R Y B	80 [26.7]	Total BTUH (kW) Sens BTUH (kW) Power	177.2 [51.9] 81.3 [23.8] 15.9	169.7 [49.7] 73.0 [21.4] 15.5	164.4 [48.2] 67.2 [19.7] 15.3	172.3 [50.5] 96.0 [28.1] 15.8	165.0 [48.4] 86.2 [25.3] 15.5	159.9 [46.8] 79.3 [23.2] 15.2	168.8 [49.5] 111.4 [32.6] 15.7	161.7 [47.4] 100.1 [29.3] 15.4	156.6 [45.9] 92.1 [27.0] 15.2
B	90 [32.2]	Total BTUH (kW) Sens BTUH (kW) Power	165.3 [48.5] 73.8 [21.6] 17.2	158.4 [46.4] 66.3 [19.4] 16.8	153.4 [45.0] 61.0 [17.9] 16.6	160.5 [47.0] 88.5 [25.9] 17.1	153.7 [45.0] 79.5 [23.3] 16.7	148.9 [43.6] 73.1 [21.4] 16.5	157.0 [46.0] 103.9 [30.4] 17.0	150.4 [44.1] 93.3 [27.3] 16.7	145.7 [42.7] 85.9 [25.2] 16.4
T M P E R	100 [37.8]	Total BTUH (kW) Sens BTUH (kW) Power	150.8 [44.2] 63.6 [18.6] 18.8	144.4 [42.3] 57.1 [16.7] 18.4	139.9 [41.0] 52.6 [15.4] 18.1	145.9 [42.8] 78.3 [22.9] 18.7	139.7 [40.9] 70.3 [20.6] 18.3	135.4 [39.7] 64.7 [19.0] 18.0	142.4 [41.7] 93.7 [27.5] 18.6	136.4 [40.0] 84.2 [24.7] 18.2	132.1 [38.7] 77.4 [22.7] 17.9
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	133.4 [39.1] 50.7 [14.9] 20.6	127.8 [37.5] 45.6 [13.4] 20.2	123.8 [36.3] 41.9 [12.3] 19.9	128.6 [37.7] 65.4 [19.2] 20.5	123.1 [36.1] 58.8 [17.2] 20.1	119.3 [35.0] 54.0 [15.8] 19.8	125.1 [36.7] 80.8 [23.7] 20.5	119.8 [35.1] 72.6 [21.3] 20.0	116.1 [34.0] 66.8 [19.6] 19.7
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	113.4 [33.2] 35.2 [10.3] 22.8	108.6 [31.8] 31.6 [9.3] 22.3	105.2 [30.8] 29.1 [8.5] 22.0	108.5 [31.8] 49.9 [14.6] 22.7	103.9 [30.4] 44.8 [13.1] 22.2	100.7 [29.5] 41.2 [12.1] 21.9	105.0 [30.8] 65.3 [19.1] 22.6	100.6 [29.5] 58.7 [17.2] 22.1	97.4 [28.6] 54.0 [15.8] 21.8

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE) - G300

				EN	ITERING INDOC	R AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	71.4 [20.9] 11.7 [3.4] 8.9	68.4 [20.1] 10.5 [3.1] 8.7	66.3 [19.4] 9.7 [2.8] 8.6	67.6 [19.8] 18.4 [5.4] 8.8	64.7 [19.0] 16.6 [4.9] 8.7	62.7 [18.4] 15.2 [4.5] 8.5	65.4 [19.2] 28.6 [8.4] 8.8	62.7 [18.4] 25.7 [7.5] 8.6	60.7 [17.8] 23.7 [6.9] 8.5
O R D	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	69.5 [20.4] 9.8 [2.9] 9.0	66.5 [19.5] 8.8 [2.6] 8.8	64.5 [18.9] 8.1 [2.4] 8.7	65.6 [19.2] 16.5 [4.8] 9.0	62.8 [18.4] 14.8 [4.4] 8.8	60.9 [17.8] 13.7 [4.0] 8.6	63.5 [18.6] 26.7 [7.8] 8.9	60.8 [17.8] 24.0 [7.0] 8.7	58.9 [17.3] 22.1 [6.5] 8.6
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	67.3 [19.7] 7.8 [2.3] 9.2	64.5 [18.9] 7.0 [2.1] 9.0	62.4 [18.3] 6.4 [1.9] 8.8	63.4 [18.6] 14.5 [4.3] 9.1	60.8 [17.8] 13.1 [3.8] 8.9	58.9 [17.3] 12.0 [3.5] 8.8	61.3 [18.0] 24.7 [7.2] 9.1	58.7 [17.2] 22.2 [6.5] 8.9	56.9 [16.7] 20.4 [6.0] 8.7
U L B	75 [23.9]	Total BTUH (kW) Sens BTUH (kW) Power	64.9 [19.0] 5.7 [1.7] 9.4	62.2 [18.2] 5.2 [1.5] 9.2	60.3 [17.7] 4.7 [1.4] 9.0	61.1 [17.9] 12.5 [3.7] 9.3	58.5 [17.1] 11.2 [3.3] 9.1	56.7 [16.6] 10.3 [3.0] 9.0	58.9 [17.3] 22.7 [6.6] 9.3	56.4 [16.5] 20.4 [6.0] 9.1	54.7 [16.0] 18.7 [5.5] 8.9
EM PER	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	62.4 [18.3] 3.6 [1.1] 9.6	59.7 [17.5] 3.2 [0.9] 9.4	57.9 [17.0] 3.0 [0.9] 9.3	58.5 [17.2] 10.3 [3.0] 9.6	56.1 [16.4] 9.3 [2.7] 9.4	54.3 [15.9] 8.5 [2.5] 9.2	56.4 [16.5] 20.5 [6.0] 9.5	54.0 [15.8] 18.4 [5.4] 9.3	52.3 [15.3] 17.0 [5.0] 9.2
A T URE	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	59.6 [17.5] 1.4 [0.4] 9.9	57.1 [16.7] 1.2 [0.4] 9.7	55.3 [16.2] 1.1 [0.3] 9.5	55.8 [16.3] 8.1 [2.4] 9.9	53.4 [15.7] 7.3 [2.1] 9.7	51.8 [15.2] 6.7 [2.0] 9.5	53.6 [15.7] 18.3 [5.4] 9.8	51.4 [15.0] 16.4 [4.8] 9.6	49.8 [14.6] 15.1 [4.4] 9.5
°F [°C]	90 [32.2]	Total BTUH (kW) Sens BTUH (kW) Power	56.7 [16.6] -0.9 [-0.3] 10.2	54.3 [15.9] -0.8 [-0.2] 10.0	52.6 [15.4] -0.8 [-0.2] 9.9	52.8 [15.5] 5.8 [1.7] 10.2	50.6 [14.8] 5.2 [1.5] 10.0	49.0 [14.4] 4.8 [1.4] 9.8	50.7 [14.9] 16.0 [4.7] 10.1	48.5 [14.2] 14.4 [4.2] 9.9	47.0 [13.8] 13.2 [3.9] 9.8

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) - G300

				EN	ITERING INDOC	OR AIR @ 75°F	[23.9°C] dbE ①)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
O U T D	60 [15.6]	Total BTUH (kW) Sens BTUH (kW) Power	248.3 [72.8] 123.3 [36.1] 17.6	237.8 [69.7] 110.8 [32.5] 17.3	230.4 [67.5] 101.9 [29.9] 17.0	242.5 [71.1] 140.7 [41.2] 17.5	232.2 [68.1] 126.4 [37.0] 17.1	225.0 [65.9] 116.2 [34.1] 16.9	236.6 [69.3] 162.1 [47.5] 17.4	226.6 [66.4] 145.6 [42.7] 17.0	219.6 [64.3] 134.0 [39.3] 16.7
O O R	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	239.0 [70.0] 116.1 [34.0] 18.7	228.9 [67.1] 104.3 [30.6] 18.3	221.7 [65.0] 96.0 [28.1] 18.0	233.2 [68.3] 133.5 [39.1] 18.6	223.3 [65.4] 119.9 [35.1] 18.2	216.4 [63.4] 110.3 [32.3] 17.9	227.3 [66.6] 154.9 [45.4] 18.4	217.7 [63.8] 139.2 [40.8] 18.0	210.9 [61.8] 128.0 [37.5] 17.8
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	226.9 [66.5] 106.9 [31.3] 20.1	217.3 [63.7] 96.0 [28.1] 19.7	210.5 [61.7] 88.3 [25.9] 19.4	221.1 [64.8] 124.2 [36.4] 20.0	211.8 [62.1] 111.6 [32.7] 19.6	205.2 [60.1] 102.6 [30.1] 19.3	215.2 [63.1] 145.7 [42.7] 19.9	206.1 [60.4] 130.8 [38.3] 19.4	199.7 [58.5] 120.4 [35.3] 19.2
U B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	212.0 [62.1] 95.5 [28.0] 22.0	203.1 [59.5] 85.8 [25.1] 21.5	196.7 [57.7] 78.9 [23.1] 21.2	206.2 [60.4] 112.9 [33.1] 21.8	197.5 [57.9] 101.4 [29.7] 21.4	191.4 [56.1] 93.3 [27.3] 21.0	200.4 [58.7] 134.3 [39.4] 21.7	191.9 [56.2] 120.6 [35.4] 21.2	185.9 [54.5] 111.0 [32.5] 20.9
M P E R	100 [37.8]	Total BTUH (kW) Sens BTUH (kW) Power	194.4 [57.0] 82.1 [24.1] 24.2	186.2 [54.6] 73.7 [21.6] 23.7	180.4 [52.9] 67.8 [19.9] 23.3	188.6 [55.3] 99.4 [29.1] 24.0	180.6 [52.9] 89.3 [26.2] 23.5	175.0 [51.3] 82.2 [24.1] 23.2	182.7 [53.6] 120.9 [35.4] 23.9	175.0 [51.3] 108.6 [31.8] 23.4	169.6 [49.7] 99.9 [29.3] 23.0
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	174.0 [51.0] 66.6 [19.5] 26.7	166.6 [48.8] 59.8 [17.5] 26.2	161.4 [47.3] 55.0 [16.1] 25.8	168.2 [49.3] 83.9 [24.6] 26.6	161.1 [47.2] 75.4 [22.1] 26.0	156.1 [45.7] 69.3 [20.3] 25.7	162.3 [47.6] 105.4 [30.9] 26.5	155.5 [45.6] 94.6 [27.7] 25.9	150.6 [44.1] 87.1 [25.5] 25.5
°F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	150.8 [44.2] 49.0 [14.4] 29.7	144.4 [42.3] 44.0 [12.9] 29.1	139.9 [41.0] 40.5 [11.9] 28.6	145.0 [42.5] 66.3 [19.4] 29.6	138.9 [40.7] 59.6 [17.5] 28.9	134.5 [39.4] 54.8 [16.1] 28.5	139.1 [40.8] 87.8 [25.7] 29.4	133.3 [39.0] 78.8 [23.1] 28.8	129.1 [37.8] 72.5 [21.2] 28.4

AIRFLOW PERFORMANCE—15 TON [52.7 kW] — 60 Hz — SIDEFLOW

		6	8	41	3279	3425	3579	40	3910	4088	4274	4468	4670	ı	Ι	ī
		[05.]		9 3141	-			4 3740		_		-			_	_
		1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0	RPM	628 60	12 865	3 871	11 877	88 884	3 890	968 97	10 905	900	11 915	90	- 80	- 6
		[.47	M	3009	3142	3283	3431	3588	3753	3926	4106	4295	4491	4696	4908	5129
		1.9	RPI	843	849	855	861	898	874	881	887	894	901	907	914	921
		.45]	8	2880	3007	3143	3287	3438	3598	3765	3941	4124	4316	4515	4722	4938
		1.8	RPM	825	832	838	845	851	858	865	871	878	885	892	899	906
		42]	×	2753	2875	3006	3144	3291	3445	3608	3778	3956	4143	4337	4539	4749
		.7 [.	RPM	808	814	821	827	834	841	848	855 (862	698	928	883	068
		<u>-</u>	W	8 6797	2746	2871	3002	3146	3295 8	3452 8	3618	3791	3972 8	4161	4358 8	4563 8
		6 [.4														
		-	RPM	2 789	962 6	9 802	7 809	3 816	8 823	0 830	0 838	8 845	4 852	7 859	6 867	9 874
		[.37]	>	2507	2619	2739	2867	3003	3148	3300	3460	3628	3804	3987	4179	4379
		1.5	RPM	022	777	784	791	798	805	812	820	827	835	842	820	857
		35]	>	2387	2494	2609	2732	2863	3002	3149	3304	3467	3638	3816	4003	4198
		1.4	RPM	750	157	764	771	622	982	794	801	809	816	824	832	840
		[2]	W	2270	2372	2482	2600	2726	2860	3001	3151	3309	3474	3648	3830	4019
		3[.3	RPM	729 22	736 23	744 2	751 26	759 27	766 28	774 30	782 3-	790 33	797 34	802 36	813 38	821 4
	Pa]	[.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40]				-										
	External Static Pressure—Inches of Water [kPa]	[.30	M	3 2156	5 2253	3 2357	1 2470	3 2591	5 2719	4 2856	2 3001	3153	3313	3482	4 3658	3 3843
	Wat	1.2	RPM	80/	715	723	731	738	746	754	762	770	2778	982	794	803
	es of	.27]	>	2044	2136	2235	2343	2458	2582	2713	2852	3000	3155	3318	3490	3669
	-Inch	1.1	RPM	989	693	701	209	717	725	733	741	749	758	99/	774	783
	ure-	25]	8	1934	2021	2115	2218	2328	2446	2573	2207	2849	2999	3157	3323	3497
	ress	1.0.1	RPM	693	671	629	289	695	203	712	720	728	737	745	754	292
	atic I	0.9 [.22] 1.0 [W	1827	1909	1998	2095	2200	2313	2435	2564	2701	2846	2999	3160	3328
	ıal St	9 [.2	RPM	640 1	648	656 1	664 2	673 2	681 2	689 2	698 2	707	715 2	724 2	733 3	742 3
	xterr]		1723 6	9 66/1		1975 6				2423 6	2555 7				
	_	0.8 [.20]	M	-	÷	2 1883		9 2075	8 2183	7 2299			3 2695	2 2842	1 2998	3162
		3.	RPM	1 616	624	632	641	649	929	99 9	9 675	1 684	93	3 702	711	3 720
		[11]	W M	1621	1692	1771	1857	1952	2055	2166	2285	2411	2546	2689	2839	2998
		[71.] 7.0	RPM	591	599	809	617	625	634	643	652	661	929	629	889	869
			8	1521	1587	1661	1742	1832	1930	2035	2149	2270	2400	2537	2683	2836
		19.6	RPM W	292	574	583	265	601	910	619	628	637	647	929	999	
		2]	8	- -	1	1553	1630	1714 (1807	1907	2016 (2132	2256 (2389	2229	2677 675
		5[.	M	<u> </u>	Ī	557 1	566 1	576 1	585 1	594	603 2	613 2	622 2	632 2	641 2	
		0 [(RPM W RPM W	_	<u>'</u>	15	- 20	- 5	1686 5	1781 5	1885 6	1996 6	2115 6	2242 6	2378 6	2521 651
		4[.1	<u>М</u>	-					i							7 25
2		0	윤	_	_			<u> </u>	529	269	278	2 588	6 597	6 607	8 617	6 627
. / K		[.07	>	_	_			_		1		1862	1976	2099	2228	2366
(C) SI		0.3	RPM W	-	1		1	1	1	1		295	572	582	592	2215 602
0 0		.05]	×	-	Ι	ı	ı	Τ	Ι	ı	ı	ı	Τ	1957	2082	2215
		0.2 [RPM	1	ı	ı	ı	Ι	ı	ı	Ι	ı	Ι	555	999	9/9
Capacity 15 Ions [52.7 KW]		02]	W	Т	ī	1	ī	ī	1	ī	1	П	Т	1	1	1
cab		1.	RPM	<u> </u>	1	1	1	<u> </u>	1	1	1	1	1	1	1	1
		٥	B.		_	_	-	_	_	_					_	
	¥ .	FIUW CEM [1 (61 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	1	1800 [2265]	5000 [2359]	5200 [2454	5400 [2548]	5600 [2643]	5800 [2737]	00 [2831]	oo [2926]	6400 [3020]	6600 [3114]	6800 [3209]	7000 [3303]	7200 [3398]
_	_	2	5	480	200	520	54(29(580	0009	6200	640	99	986	700	720

NOTE: L-Drive left of bold line, M-Drive right of bold line, N-Drive right of double line.

				9	761
				5	795
	8.5.4]	2H	99	4	826
S	5.0 [3728.5.4]	BK105H	1VP-56	3	860
				2	888
				-	920
				9	260
				2	593
В	3.0 [2237.1]	BK105H	1VP-44	4	624
_	3.0 [2	BK1	1VP	3	655
				2	689
				1	716
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-15 TON [52.8 kW]

CFM	4800 [2265]	5000 [2360]	5200 [2454]	5400 [2549]	5600 [2643]	5800 [2737]	6000 [2832]	6200 [2926]	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]
[[78]					Res	Resistance —	- Inches o	Inches of Water [kPa]	rPa]				
1 - S - S - S - S - S - S - S - S - S -	0.03	0.04	0.05	90.0	90.0	0.07	80.0	60.0	0.10	0.10	0.11	0.12	0.13
Wercoll	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
no June	0.05	0.05	0.05	0.05	0.05	0.05	0.05	90.0	90'0	90.0	20.0	80.0	0.08
DOWIIIOW	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]
Downflow Economizer	0.09	0.10	0.10	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
Horizontal Economizer	0.00	0.01	0.01	0.02	0.05	0.03	0.03	0.04	0.04	0.02	0.05	90.0	90.0
R.A. Damper Open	[0.00]	[00:0]	[0.00]	[0.00]	[00:0]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Concentric Grill RXRN-AD80 or	0.21	0.25	0.28	0.32	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64
RXRN-AD81 & Transition RXMC-CJ07	[0.02]	[0.06]	[0.0]	[0.08]	[0.0]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
Draceure Dran MEDV 8	0.068	0.072	9/0.0	0.08	0.084	0.088	0.092	960.0	0.1	0.104	0.108	0.112	0.116
riessule Diop MENV 0	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[:03]
December Days MEDV 43	0.009	0.015	0.021	0.028	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
riessure Diop MENV 13	[.00]	[00.]	[00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS-15 TON [52,8 kW]

	CHILE			2	1 OIN [32.3 NW]								
ACTUAL—CFM	4800	2000	5200	5400	2600	5800	0009	6200	6400	0099	0089	2000	7200
[L/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3338]
TOTAL MBTUH	0.97	0.97	0.98	0.98	66'0	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06'0	0.92	0.94	26.0	66'0	1.02	1.04	1.06	1.09	1111	1.14	1.16
POWER KW	0.98	0.98	0.99	0.99	66'0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-SIDEFLOW

		٥	Capacity 20 Tons [70.3 kW]	ty 7	O Ton	s [70.	3 KW]																																
	II I															ш	xtern	al Sta	tic Pre	ssure	External Static Pressure—Inches of Water [kPa]	es of	Water	[kPa]															
	FIUW CEM [1 61 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	0.1	[.02]	0.2	.05]	0.3	[20:	0.4 [<u>=</u>	0.5 [12] [0.6		0.7[.1	7] 0.	0.8 [.20]	0.	9[.22	1.0	1[.25]	0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45]	[.27]	1.2 [.30]	1.3[32]	1.4[3	5]	5[3]	7	6 [.40	1.7	[.42]	8.	[.45]	1.9 [.47] 2.0 [.50]	47] 2	.0[.5	=
_ د	, r IM [L/3	. RPI	>	RPM W RPM W RPM W RPM W	>	RPM	>	RPM	×	RPM	W	RPM W	W	RPM \	W RP	RPM W	W RPM	M	/ RPM	M	RPM	≥	RPM	>	RPM	≥	RPM	W	RPM W	V RPM	×	RPM	×	RPM	≥	RPM	W	RPM W	_
64	6400 [3020]	— [[o	_	_	_	-	_	-	_	_) -	628 2260		652 23	2378 67	675 2498	269 86	7 2621	21 719	9 2746	3 740	2873	762	3004	782	3136	802 32	3225 8	822 34	3410 842	2 3550	098 09	8698	3 879	3838	897	3986	915 4136	36
99	6600 [3114]	4] —	1	1	ı	ı	ı	ī		615 2247		638 2367		661 24	2489 68	684 26	2613 706	6 2740	40 728	8 2869	9 749	3001	770	3136	280	3273	810 34	3412 8	830 35	3555 84	849 3699	198 6	3846	3 886	3996	903	4148 9	921 4303	33
39	6800 [3209]	1	1	ı	ı	ı	ī	ī	1	625 2358	358	648 2482		671 26	2608 69	694 2736	36 715	5 2868	38 737	7 3001	758	3138	8//	3277	298	3418	818 39	3562 8	837 370	3708 856	9827	278 75	9008	893	4162	910	4319 9	927 4478	82
7	7000 [3303]	3] —	1	ı	Ι	ı	Ι	612 2352		636 2477		659 2605		681 27	2735 70	703 286	2868 725	5 3004	24 746	5 3142	792	3282	787	3426	807	3571	826 37	3719 8	845 387	3870 864	4023	3 882	4179	900	4337	917	4498 9	934 4661	51
7,5	7200 [3398]	8	1	ı	ı	ī	ī	623 2475	2475	646 2	2605	669 2737	-	691 28	2872 71	713 300	3009 734	4 3149	49 755	5 3291	1776	3436	96/	3583	815	3733	834 38	3885 8	853 40	4040 871	1 4198	889	4358	8 907	4520	924	4685 9	940 4853	23
74	7400 [3492]	2] —	1	1	Ι	ı	ı	634 2	634 2607 657 2741 679 2877	657 2	741	679 2		701 30	3016 72	723 3158	58 744	4 3302	22 764	4 3448	3 784	3597	804	3749	824	3903	842 40	4060 86	861 42	4219 87	879 4381	11 897	7 4545	5 914	4712	930	4881	947 5053	23
7E	7600 [3586]	— [9	1	1	ı	622	2611 645 2747	645 /	2747	667 2885	2885	689 3026		711 31	3169 73	732 3315	15 753	3 3463	33 774	4 3614	194	3767	813	3923	832 4	4082	851 42	4243 86	869 440	4406 887	7 4572	72 904	1 4741	1 921	4912	937	5085	953 5261	9.1
3/	7800 [3681]	-	1	1	ı	633	2756	656 2895	2895	678 3038	3038	700 3183		721 33	3331 74	742 3481	81 763	3 3633	33 783	3 3788	803	3946	822	4106	841	4269	859 4	4434 87	877 460	4602 895	5 4772	2 912	4945	5 928	5120	944	5298 9	960 5478	82
8	8000 [3775]	5]	1	622	622 2767 644	644	2908	667 3053 689 3199	3053	689		711 3349		732 38	3500 75	752 3655	55 773	3 3812	12 793	3 3971	1 812	4133	831	4297	849	4464	868 46	4634 88	885 480	4806 902	12 4980	919	5157	936	5337	952 5	55199	967 5704	4
8	8200 [3869]	9]	1	-	2923	929	633 2923 656 3069 678 3218 700 3369 721 3523	829	3218	700	3369	721 3	3523	742 36	3679 76	762 3837	37 783	3 3998	38 802	2 4162	821	4328	840	4497	828	4668	876 48	4842 89	894 50	5018 91	910 5197	7 927	5378	8 943	5562	929	5749 9	974 5937	37
8	8400 [3964]	4] 622	2 2941	645	3089	299	3239 689 3392 711 3547 732 3705	689	3392	711	3547	732 3		752 38	3865 77	773 403	4028 792	12 4194	94 812	2 4362	831	4532	849	4705	7 298	4881	885 50	2029 90	902 523	5239 91	919 5422	2 935	9099	3 951	2796	996	5987 9	981 6180	98
8	8600 [4058]	8] 634	3111	3111 657	3263 679		3417 701 3574 722 3734 743 3896	701	3574	722	3734	743 3	3896	763 40	4061 78	783 422	4228 802	12 4397	97 822	2 4570	0 840	4744	828	4922	876	5101	893 57	5284 9	910 54	5468 927	7 5656	943	3 5846	3 958	6038	974 6	6233 9	988 6430	30
8	8800 [4153] 647 3289 669 3445 691 3604 712 3765 733 3929 754 4095 774	3] 647	3289	699	3445	691	3604	712	3765	733	3929	754 4	1095		4264 79	793 44	4436 813	3 4610	10 831	1 4786	920	4965	898	5147	885	5331	902 56	5517 9	919 57	5706 93	935 5898	951	6092	996	6289	981	6488		
<u>6</u>	9000 [4247] 659 3475 681 3635 702 3799 724 3964 744 4132 765 4303 784	7] 659	3475	681	3635	702	3799	724	3964	744 4	1132	765 4	1303		4476 80	804 468	4652 823	3 4830	30 841	1 5011	829	5194	877	5380	894	5568	911 57	2759 92	927 59	5952 943	3 6148	8 959	9 6347	974	6548	989	6751		,
36	9200 [4341] 671 3670 693 3835 714 4002 735 4172 756 4344 776 4519 795	1] 671	3670	693	3835	714	4002	735 4	4172	756 4	1344	776 4	1519		4697 81	814 48	4877 833	3 5059	59 851	1 5244	1 869	5432	887	5622	904	5814	920 (6)	6009	936 62	6207 952	2 6407	1 967	6610	3 982	6815	ı	i	<u> </u> -	,
6	9400 [4436] 684 3873 705 4042 726 4214 747 4388 767 4565 787 4744	6] 684	1 3873	3 705	4042	726	4214	747	4388	767	1565	787 4		806 49	4925 82	825 51	5110 843	13 5297	97 861	1 5486	879	2678	896	5872	913 (6909	959 6%	6 8979	945 64:	6470 960	9299 0	75 975	5 6881	1 990	7091	1	_	_	
<u>8</u>	9600 [4530] 696 4085 717 4258 738 4434 759 4612 779 4793 798 4977 817	0] 696	4085	717	4258	738	4434	759	4612	779	1793	798 4	1977		5163 83	836 5351	51 854	4 5542		872 5736	889	5932	906 6131		922	6332	938 6	6535 99	954 67	6742 96	969 6920	0 984	1 7162	_		ī	Ì	 -	
ĮŽ	MOTE-1 - Drive left of hold line M-Drive right of hold line	Arive le	off of h	nil bloc	M-M	Jriva r	richt o	Fhold	line																														ı

NOTE: L-Drive left of bold line, M-Drive right of bold line.

	_	_	_	_									
				9	853								
				5	883								
(field installed only)	592.7]	BK120H	-71	4	912								
(field inst	7.5 [5592.7]	BK1	1VP-71	3	940								
				2	296								
				1	994								
				9	793								
				5	820								
	[2.7]	H	1	4	848								
S	7.5 [5592.7]	BK130H	1VP-71	3	875								
				2	905								
				-	927								
R 5.0 [3728.5.4] BK130H 1VP-56 3 4 5 6 696 668 641 614													
											2	723	
												-	748
								Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.

4. Drive data shown is for horizontal airflow with dry coll. Add component resistance (below) to duct

resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE - 20 TON [70.3 kW]

	6400	0099	0089	2000	7200	7400	009/	7800	8000	8200	8400	8600	8800	0006	9200	9400	0096
CFM	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
[۲/۶]							Resista	Resistance — I	Inches of Water [kPa]	of Water	[kPa]						
Wet Ceil	0.00	0.00	00.0	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.07
Wel coll	[.00]	[00.]	[.00]	[00.]	[00.]	[00.]	[00.]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]
Doumflour	90.0	90.0	0.07	80.0	80.0	60.0	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22
Mollilow	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[:05]	[:05]	[.05]
Downflow Economizer	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
R.A. Damper Open	[.04]	[.04]	[.04]	[.04]	[.04]	[:05]	[:05]	[:05]	[:05]	[90:]	[90:]	[90.]	[90]	[.07]	[.07]	[.07]	[.07]
Horizontal Economizer	0.04	0.05	0.05	90.0	90.0	0.07	20.0	80.0	0.09	60.0	0.10	0.10	0.11	0.11	0.12	0.12	0.13
R.A. Damper Open	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[:03]	[:03]	[:03]
Concentric Grill RXRN-AD86	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.5	0.53	95.0	0.59	0.62	0.65	69.0	0.72	0.75
& Transition RXMC-CK08	[90]	[.07]	[80.]	[60:]	[60:]	[.10]	E.	[.12]	[.12]	[13]	[14]	[15]	[.15]	[16]	[17]	[.18]	[19]
O MCDM COMMON OF THE PARTY OF T	0.1	0.104	0.108	0.112	0.116	0.12	0.124	0.128	0.132	0.136	0.14	0.144	0.148	0.152	0.156	0.16	0.164
riessure Drup MENV o	[.02]	[.02]	[.03]	[:03]	[:03]	[.03]	[:03]	[:03]	[:03]	[.03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]
December Deep MEDV 13	0.058	$\overline{}$	$\overline{}$	0.077	0.083	0.089	0.095	0.102	0.108	0.114	0.12	0.126	0.132	0.138	0.145	0.151	0.157
riessure Diop MENV 13	[.0]	[.02]	[.02]	[.02]	[.02]		[.02]	[.02]	[:03]	[.03]	[:03]	[:03]	[:03]	[.03]	[04]	[.04]	[.04]
				1	1	1		1	1	1	1			1	1	1	1

AIRFLOW CORRECTION FACTORS - 20 TON [70,3 kW]

							[
ACTUAL—CFM	6400	0099	0089	2000	7200	7400	009/	7800	8000	8200	8400	0098	8800	0006	9200	9400	0096
[I/s]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
TOTAL MBH	0.97	0.97	0.98	86.0	66.0	66.0	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03	1.04	1.04
SENSIBLE MBH	0.88	06:0	0.92	0.94	96.0	0.97	0.99	1.01	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.16	1.18
POWER KW	0.98	0.99	0.99	0.99	66.0	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.02

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

AIRFLOW PERFORMANCE - 25 TON [87.9 kW]-SIDEFLOW

												اا																									
	Capacity	acity	22	ous	25 Tons [87.9 kW]	M																															
All															Ě	ernal	Static	External Static Pressure—Inches of Water [kPa]	le_	nches	of Wa	ter (k	Pa]														
CEM [1 /c]	0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	12] 0	.2[.0	5]	3[.07	7] 0.4	<u>.</u>	0.5	[12]	0.6	-	0.7	17]	0.8[.2	0] 0	.9[.2	2] 1	0.8 [.20] 0.9 [.22] 1.0 [.25]		1[.27	1.1 [.27] 1.2 [.30]	2 [.30	1.3	[32]	\vdash	1.4 [.35]	1.5 [.37]	.37]	1.6 [.40]	.40]	1.7 [.42]	42] 1	1.8[.4	.45] 1.9		47] 2.0	[.50]
[E/3] III [F/9]	RPM V	W	RPM V	WRP	RPM W	/ RPM	>	RPM	≥	RPM	>	RPM	W	RPM	W	RPM V	W RF	RPM W	/ RPM	M	/ RPM	M	RPM	×	RPM	×	RPM	M	RPM	8	RPM	W	RPM V	W RPM	8	RPM	8
8000 [3775]	1	<u> </u>	<u> </u>	Н	<u> </u>	-		1		_	1	1		<u>'</u>	<u> </u>	-)8 —	807 4333	33 826	6 4498	38 845	5 4666	863	4837	288	5010	006	5187	918	5366	936 5	5549	954 5734	34 97	971 5922 988 6113	886	6113
8200 [3869]	1	<u>'</u>						1	ı	ı	ı	ī	ī	ī	_	797 43	4331 81	816 4499	99 835	5 4670	70 854	4 4844	4 872	5021	880	5201	606	5383	927	5569	944 5	5757 9	962 59	5949 979	6143	966	6340
8400 [3964]	1	<u>'</u>			<u> </u> -	-		1	ı	1	ı	ī	ī	Ī	-	806 45	4505 82	825 4679	79 844	4 4856	56 863	3 5036	98 881	5219	668	5404	917	5593	932	5784	953 5	5979	970 6176	76 987	6377	6377 1004 6580	6580
8600 [4058]	1	<u>'</u>		_					ı	١	ı	ī	1	797 49	4514 8	816 46	4691 83	835 4871	71 854	4 5054	54 872	2 5240	068 01	5429	808	5621	926	5816	944	6013	961 6	6214 9	979 64	6417 996	9 6623	1012 6833	6833
8800 [4153]	1	<u>'</u>							ı	ı	ı	ī	Ī	807 47	4707 8	826 48	4890 84	845 5077	22 863	3 5266	36 882	2 5458	900	5653	3 918	5851	935	6051	953	6255	970	6462 9	987 66	6671 1004 6883 1021 7099	4 6883	1021	7099
9000 [4247]	1	<u>'</u>		\vdash			1	1	ı	١	1	798	4727	817 49	4914 8	836 51	5103 85	855 5295	95 873	3 5490	90 891	1 5689	606 68	2830	927	6094	944	6300	362	6510	926	6723 9	996 6938 1013 7157 1029 7378	38 101	3 7157	1029	7378
9200 [4341]	1	 -		\vdash	<u> </u> -			1	Ī	790	4751	608	4941	828 5	5133 8	846 53	5329 86	865 5527	27 883	3 5728	28 901	1 5932	32 919	6140	936	6349	954	6562	971	82.29	988	6997 1	1005 7218 1021 7443 1038 7670	18 102	1 7443	1038	0/9/
9400 [4436]	1	· 	1		 -	1	1	1	ı	801	801 4972	820	5167	838 5	2366 8	857 55	2267 87	875 5772	72 893	3 5979	79 911	1 6189	89 928	6403	3 946	6619	963	6837	980	7059	997 7	7284 1	7284 1014 7512 1030 7742 1046 7976	12 103	0 7742	1046	9262
9600 [4530]	1	<u>'</u>	-	-	<u> </u> -	-		793	5007	812	5205	830	5407	849 56	5612 8	867 58	5819 88	885 6030	30 903	3 6243	13 921	1 6459	938	6299	926	6901	973	7126	980	7354	1006 7584 1023 7818 1039 8055 1055 8294	7584	023 78	18 103	9 8055	1055	8294
9800 [4624]	1	i.		Н				804	5247	823	5452	841	2660	860 58	5871 8	878 60	6084 89	896 6301	01 914	4 6520	20 931	1 6743	13 949	8969	996	7196	983	7427	666	7661	1016 7898 1032 8138 1048 8380 1064	1898	032 81	38 104	8 8380	1064	8626
10000 [4719]	1	<u>'</u>		-	<u> </u> -	- 797	5293	815	815 5501		834 5712	852	2926	871 6	6143 8	889 63	9893	907 6585	85 924	4 6811	11 942	2 7039	959	7270	926 (7504	993	7742	1009	7982	1009 7982 1026 8224 1042 8470 1058 8719	3224 1	042 84	70 105	8 8719	1	ī
10200 [4813]	1	<u>'</u>	- -		789 5343	43 808	5554		827 5768	846	5985	864 (6205	882 6	6428 9	99 006	6654 91	917 6882	82 935	5 7114	14 952	2 7348	696 81	7586	986	7826	1003	8069	1019	8315	8315 1035 8564	3564 1	1021 88	8816 1067	7 9071	1	1
10400 [4908]	1	<u> </u>	<u> </u> -	-	802 5611		820 5828	839	839 6048 857 6271	857		875 (6497	893 67	6726 9	911 69	6958 92	928 7193	93 946	6 7430	30 963	3 7671	71 980	7914	966	8161	1013	8410 1029	1029	8662	8662 1045 8917 1061 9175	3917	061 91	75 —	1	1	Π
10600 [5002]	1		795 56	5672 81	814 5892		832 6115		851 6342		869 6571	887 (6803	905 70	7038 9	922 72	7276 94	940 7516	16 957	1760	50 974	4 8007	066 20	8256	3 1007	8208	1023	8764	1040	9022	1056	9283 1	1071 9547	47 —	1	١	Ι
10800 [5096] 789 5736 807 5960 826 6186	789 57	736 8	07 59	78 09	26 61	86 845	6416	863	845 6416 863 6648	881	881 6883	899	7121	916 73	7362 9	934 7606		951 7853	53 968	8 8103	03 985	5 8355	55 1001		8611 1018	8869	1034	9131	1050	9395	1066	996	<u>'</u>	<u> </u> -	1	1	Ι
[11000 [5191] 801 6031 820 6261 839 6494 857	801 60	031 8	20 62	61 8	39 64	94 857	6229	875	875 6967		893 7209	910	7453	928 7	2200	945 79	2620	962 8203	03 979	9 8458	966 89	6 8717	1012	8979	1029	9243	1045	9511	1061	9781	1	1	<u>'</u>	<u> </u> -	1	1	1
11200 [5285]	814 6340	340 8	833 65	6575 85	851 6814	14 869	9507	887	887 7300		905 7547	923	7977	940 8	8051 9	957 83	8307 97	974 8566	66 991	1 8827	27 1007	7 9092	32 1024	4 9360	1040	9630	1056	9904	1071	10180	Т	1	<u> </u>	<u> </u>	1	1	Τ
11400 [5379] 827 6661	827 66		46 69	03 86	34 71	846 6903 864 7148 882 7395 900 7646 917 7899 935	7395	900	7646	917	7899		8155	952 8	8414 9	98 696	8677 98	768 986	8942 1002	72 92C	9209 1019		9480 1035		1021	9754 1051 10031	1067	10310	ī	ı	ı	1		- -	1	1	Τ
11600 [5474] 841 6996	841 69		859 7244 877 7494	44 87	77 74		895 7748	912	912 8004		930 8264	947	8526	964 87	8791 9	981 90	6 0906	998 9331	31 1014	14 9605	05 1030	386 0	9881 1046 10161	5 1016	1 1062	10444	Ι	Ι	Τ	Ι	Т	<u> </u>	<u> </u> -	<u> </u> -		1	Ι
11800 [5568] 854 7343 872 7597 890 7854 908 8114 925 8376	854 73	343 8	72 75	97 89	90 78	54 908	8114	925	8376		943 8642	8 096	8910	977 9	9181 9	993 94	156 10	110 97;	33 102	26 100	13 104	102	9456 1010 9733 1026 10013 1042 10296 1058 10582	8 1058	2 —	-	Ι	1	Ι	Ι	1	1	<u>'</u> 	 -	1	1	1
12000 [5663] 868 7704 886 7964 903 8227	1 898 77	704 8	86 79	64 90	73 82,	27 921	921 8493 938 8761	938	8761	955	9033	972	9307	686	9585 1006	36 900	365 10	101	48 103	38 104	34 105	4 107.	9865 1022 10148 1038 10434 1054 10723 1070 11015	0 1101	2	_		Ι	Т	П	П	Ì	H	$^{+}$	Ш	Ш	П
NOTE: I - Drive left of hold line M-Drive right of hold line	vo laft of	f hold	lina	A-Driv	vo rinh	t of hol	ouil b																														

NOTE: L-Drive left of bold line, M-Drive right of bold line.

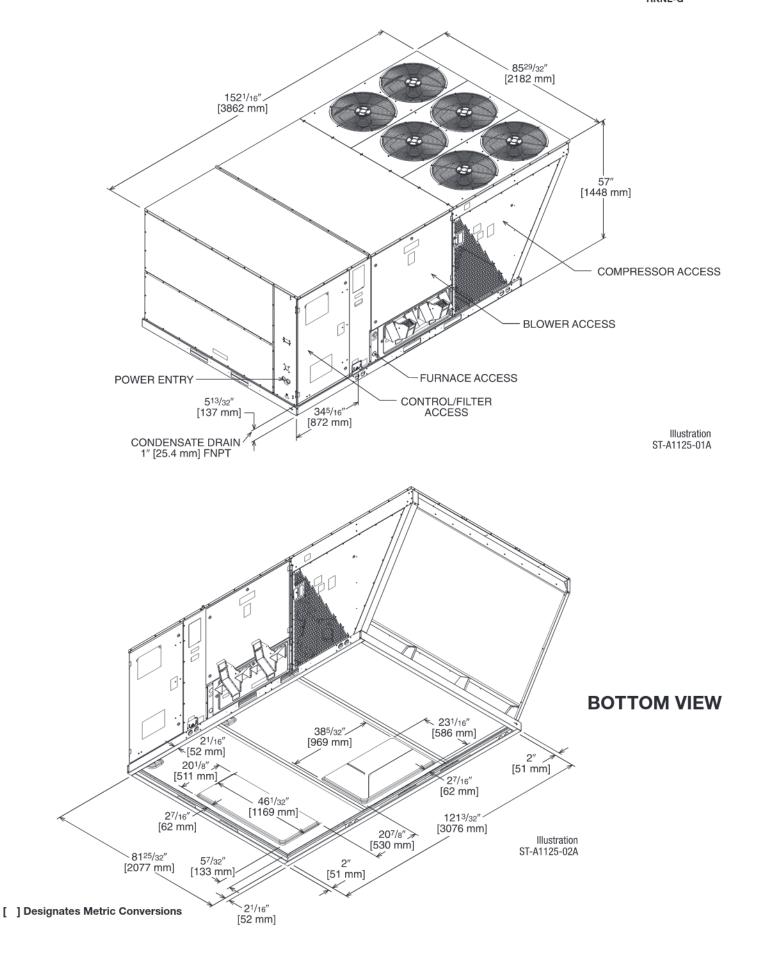
				9 9	954 929
				4	36 286
	57.0]	H	.75		6
S	10 [7457.0]	BK120H	1VP-75	8	1010
				2	1041
				-	1067
				9	791
				5	818
ж	7.5 [5592.7]	BK130H	1VP-71	4	843
	7.5 [5	BK1	1VF	3	870
				2	894
				-	922
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

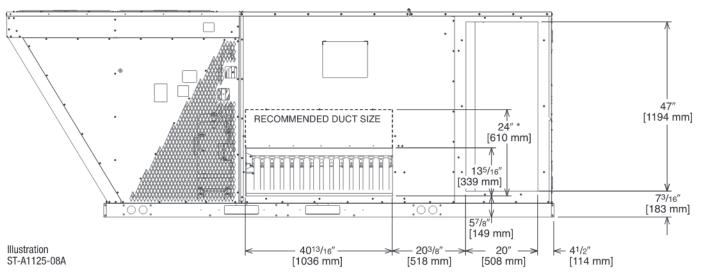
Do not set motor sheave below minimum furns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-25 TON [87.9 kW]

	8000	8400	8800	9200		10000	10400	10800	11200	9600 10000 10400 10800 11200 11600 12000	12000
CFM	[3775]	[3964]	[4153]	[4341]	[3964] [4153] [4341] [4530] [4719] [4908] [5096] [5285] [5474]	[4719]	[4908]	[2096]	[5285]		[5993]
[۲/9]				Resist	Resistance — Inches of Water [kPa]	Inches (of Water	r [kPa]			
Wet Ceil	0.07	60.0	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22
Wet coll	[.02]	[.02]	[.02]	[:03]	[:03]	[.04]	[.04]	[.04]	[:05]	[:05]	[:05]
-	0.12	0.14	0.16	0.19	0.22	0.25	0.29	0.33	0.37	0.42	0.46
Downiidw	[:03]	[:03]	[.04]	[:05]	[:05]	[90:]	[.07]	[.08]	[.09]	[.10]	[11]
Downflow Economizer	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.37	0.39	0.41	0.44
R.A. Damper Open	[.05]	[90:]	[.06]	[.07]	[.07]	[.08]	[.08]	[.09]	[.10]	[.10]	[1]
Horizontal Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
R.A. Damper Open	[.02]	[.02]	[.03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]
Concentric Grill RXRN-AD88	0.17	0.23	0.30	0.36	0.43	0.50	0.56	0.63	69.0	92.0	0.82
& Transition RXMC-CL09	[.04]	[90.]	[.07]	[.09]	[:11]	[.12]	[.14]	[.16]	[.17]	[.19]	[.20]
Description Organization of	0.132	0.14	0.148	0.156	0.164	0.172	0.18	0.188	0.196	0.204	0.212
rressure Drop MENV o	[.03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.04]	[:05]	[:05]	[:02]	[:02]
December Dece MEDV 13	0.108	0.12	0.132	0.145	0.157	0.169	0.182	0.194	0.206	0.219	0.231
rressure Drop MENV 13	[.03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[:05]	[:05]	[:02]	[90.]

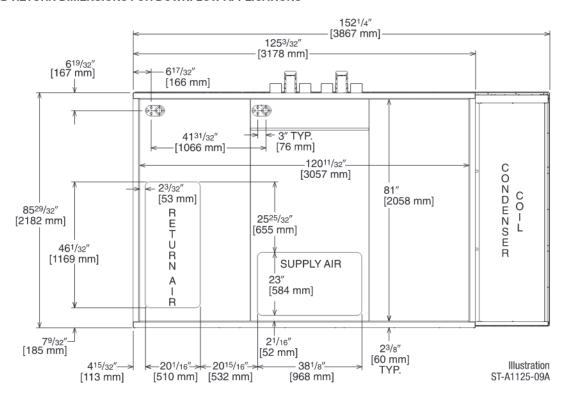

AIRFLOW CORRECTION FACTORS-25 TON [87.9 kW]

ACTUAL—CFM	8000	8400	8800	9200	0096	10000	10400	10800	11200	11600	12000
[F/s]	[3775]	[3964]	[4153]	[4341]	[4530]	[4719]	[4908]	[2036]	[5285]	[5474]	[2993]
TOTAL MBTUH	26.0	86.0	66'0	0.99	1.00	1.01	1.02	1.03	1.03	1.04	1.05
SENSIBLE MBTUH	0.89	0.92	0.95	0.98	1.01	1.04	1.08	1.11	1.14	1.17	1.20
POWER KW	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.02

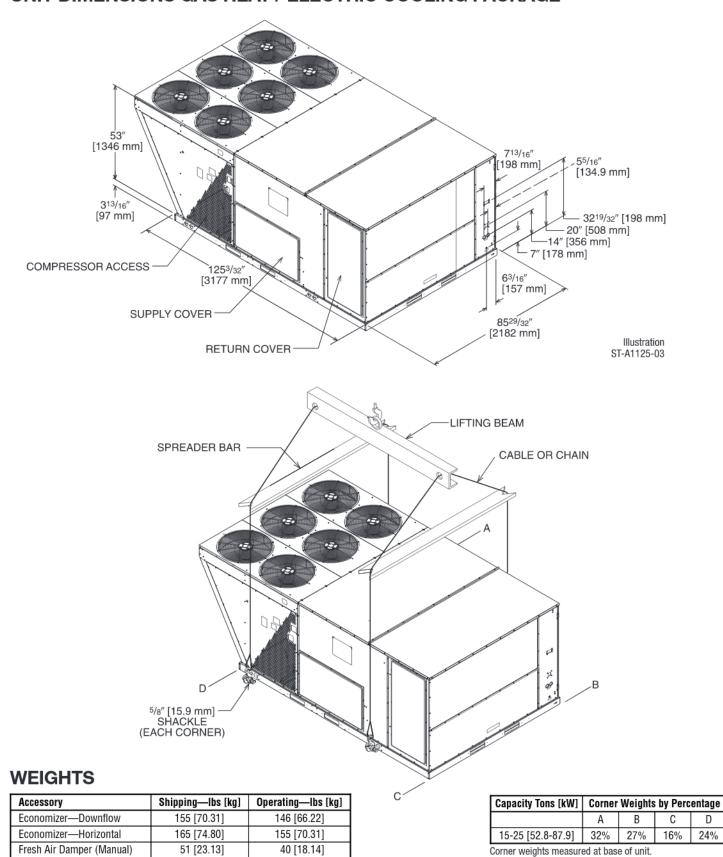

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

		ELECTRIC	AL DATA – R	KNL- SERIES			
		G180CR	G180CS	G180DR	G180DS	G240CR	G240CS
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	187-253
atio	Volts	208/230	208/230	460	460	208/230	208/230
Ë	Minimum Circuit Ampacity	78/78	81/81	38	40	101/101	109/109
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45	110/110	125/125
5	Maximum Overcurrent Protection Device Size	100/100	100/100	45	50	125/125	125/125
	No.	2	2	2	2	2	2
Γ	Volts	200/230	200/230	460	460	200/230	200/230
a [Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
SOL	HP, Compressor 1	7	7	7	7	10	10
Compressor Motor	Amps (RLA), Comp. 1	25/25	25/25	12.2	12.2	33.3/33.3	33.3/33.3
	Amps (LRA), Comp. 1	164/164	164/164	100	100	239/239	239/239
3	HP, Compressor 2	7	7	7	7	7 1/2	7 1/2
	Amps (RLA), Comp. 2	25/25	25/25	12.2	12.2	29.5/29.5	29.5/29.5
	Amps (LRA), Comp. 2	164/164	164/164	100	100	195/195	195/195
_	No.	4	4	4	4	6	6
월	Volts	208/230	208/230	460	460	208/230	208/230
Condenser Motor	Phase	1	1	1	1	1	1
ens	HP	1/3	1/3	1/3	1/3	1/3	1/3
	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	2.4/2.4	2.4/2.4
°	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	4.7/4.7	4.7/4.7
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	208/230	208/230
草	Phase	3	3	3	3	3	3
oora	HP	3	5	3	5	5	7 1/2
Evaporator Fan	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6	14.7/14.7	23.1/23.1
	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3	82.6/82.6	136/136

		ELECTRIC	AL DATA – R	KNL- SERIES			
		G240DR	G240DS	G300CR	G300CS	G300DR	G300DS
_	Unit Operating Voltage Range	414-506	414-506	187-253	187-253	414-506	414-506
aţi	Volts	460	460	208/230	208/230	460	460
Ë	Minimum Circuit Ampacity	52	56	147/147	149/149	60	63
Unit Information	Minimum Overcurrent Protection Device Size	60	60	175/175	175/175	70	70
=	Maximum Overcurrent Protection Device Size	60	70	175/175	175/175	70	80
	No.	2	2	2	2	2	2
	Volts	460	460	200/240	200/240	460	460
=	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
[HP, Compressor 1	10	10	11 1/2	11 1/2	11 1/2	11 1/2
Compressor Motor	Amps (RLA), Comp. 1	17.9	17.9	48.1/48.1	48.1/48.1	18.6	18.6
🖺	Amps (LRA), Comp. 1	125	125	245/245	245/245	125	125
5	HP, Compressor 2	7 1/2	7 1/2	11 1/2	11 1/2	11 1/2	11 1/2
	Amps (RLA), Comp. 2	14.7	14.7	48.1/48.1	48.1/48.1	18.6	18.6
	Amps (LRA), Comp. 2	95	95	245/245	245/245	125	125
	No.	6	6	6	6	6	6
월	Volts	460	460	208/230	208/230	460	460
Condenser Motor	Phase	1	1	1	1	1	1
ens	HP	1/3	1/3	1/3	1/3	1/3	1/3
틸	Amps (FLA, each)	1.4	1.4	2.4/2.4	2/2	1.4	1.4
	Amps (LRA, each)	2.4	2.4	4.7/4.7	3.9/3.9	2.4	2.4
	No.	1	1	1	1	1	1
_ FB	Volts	460	460	208/230	208/230	460	460
Evaporator Fan	Phase	3	3	3	3	3	3
B	HP	5	7 1/2	7 1/2	10	7 1/2	10
Eva	Amps (FLA, each)	6.6	9.6	24.2/24.2	28.5/28.5	9.6	12.5
	Amps (LRA, each)	46.3	67	136/136	178/178	67	74.6


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

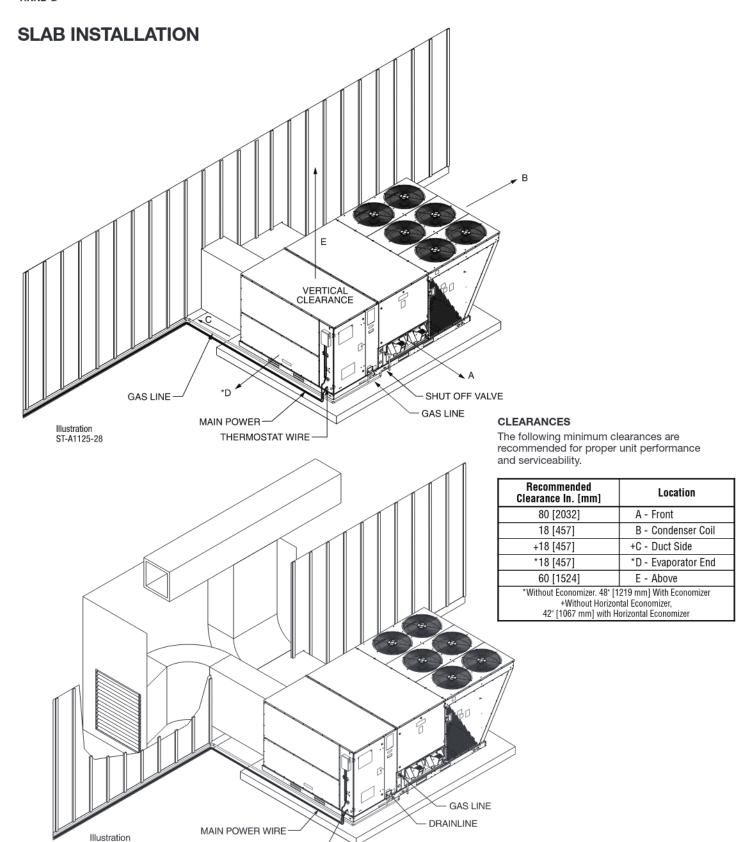
* RECOMMENDED DUCT CONNECTION SIZE


DUCT SIDE VIEW (REAR)

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

BOTTOM VIEW

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE


	Roof Curb 14"	170 [77.11]
ĺ	[] Designates Metric Conv	ersions

Fresh Air Damper (Motorized)

46 [20.87]

35 [15.88]

164 [74.39]

[] Designates Metric Conversions

ST-A1125-27

THERMOSTAT WIRE

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-01RGDAM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD-01RGDBM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV04	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-01RGHAM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per Compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]+	1 [0.5]+	No*
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]+	1 [0.5]+	No*
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKNL-C 300C voltage models.

^[] Designates Metric Conversions

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON

RHC-ZNS1

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON and STATUS INDICATOR

RHC-ZNS2

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

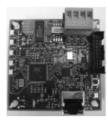
ROOM TEMPERATURE SENSOR RH with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

RHC-ZNS3

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM HUMIDITY SENSOR

RHC-ZNS4


Transmits room relative humidity to DDC System.

ROOM TEMPERATURE AND RELATIVE HUMIDITY SENSOR RHC-ZNS5

Transmits room temperature and relative humidity to DDC System.

COMMUNICATION CARDS Field Installed

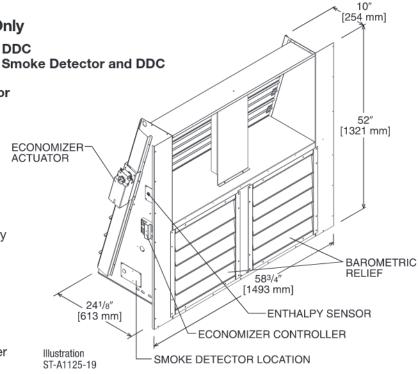
BACnet® COMMUNICATION CARD RXRX-AY01

The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

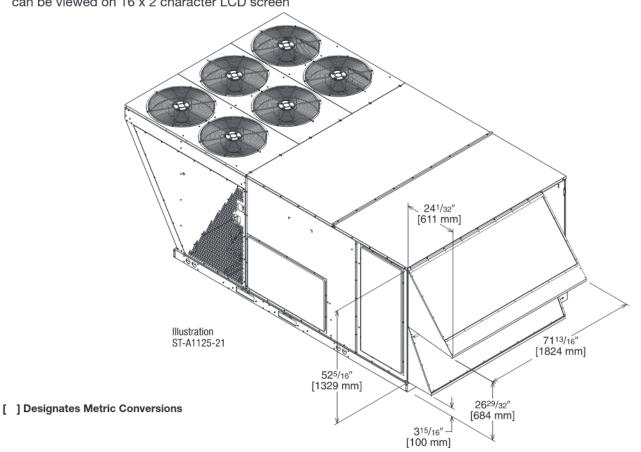
LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

ECONOMIZERS


Use to Select Factory Installed Options Only

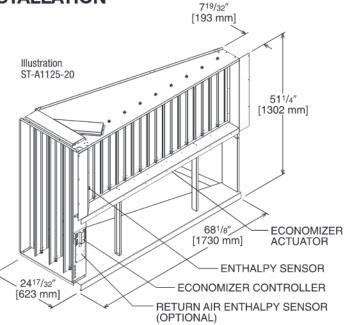
AXRD-PMCM3—Single Enthalpy (Outdoor) with DDC AXRD-SMCM3—Single Enthalpy (Outdoor) with Smoke Detector and DDC


RXRX-AV03—Dual Enthalpy Upgrade Kit

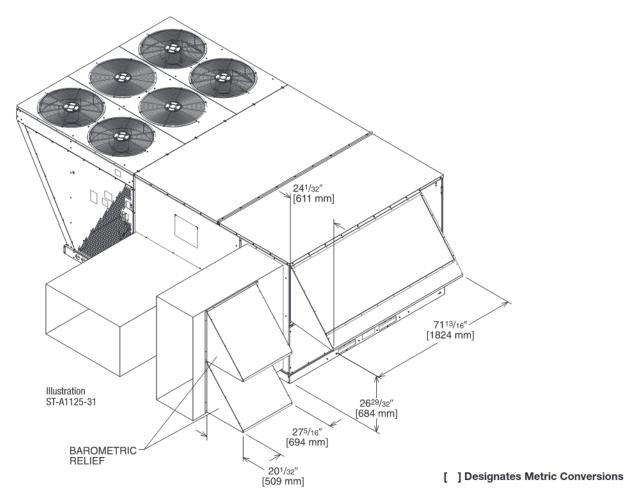
RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen

TOLERANCE ± .125

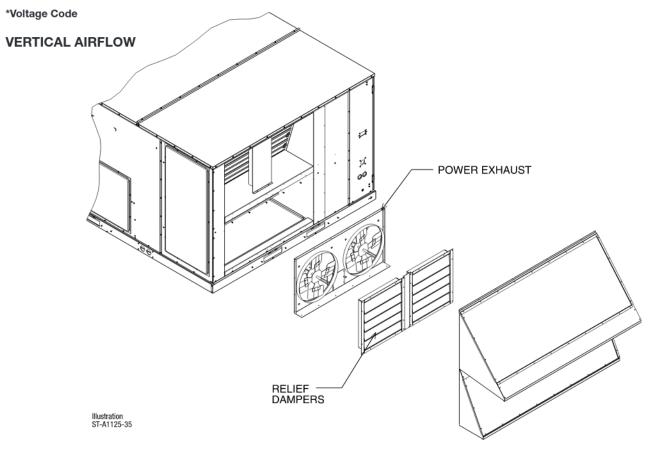


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION


Field Installed Only

AXRD-RMCM3—Single Enthalpy (Outdoor) with DDC RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



TOLERANCE ± .125

POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

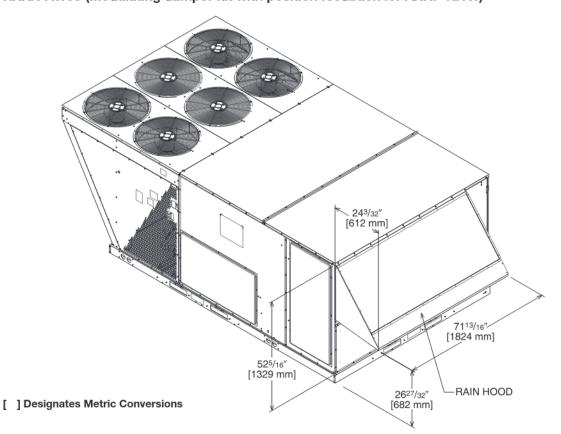
RXRX-BGF05 (C or D)

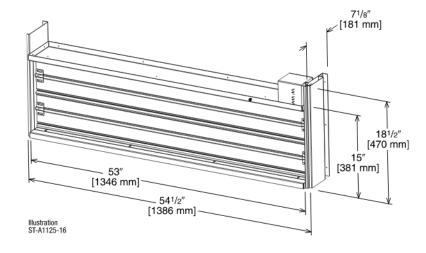
Model No.	No.	Volts	Phase	HP	Low Spec	ed	High Spee	d ①	FLA	LRA
Model No.	of Fans	VUIIS	Filase	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4

NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

exhaust is factory set on high speed motor tap. [] Designates Metric Conversions

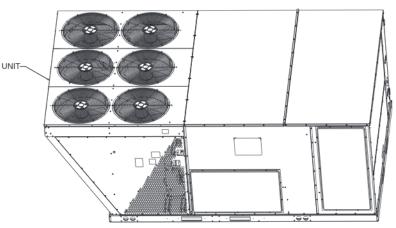
FRESH AIR DAMPER


MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)

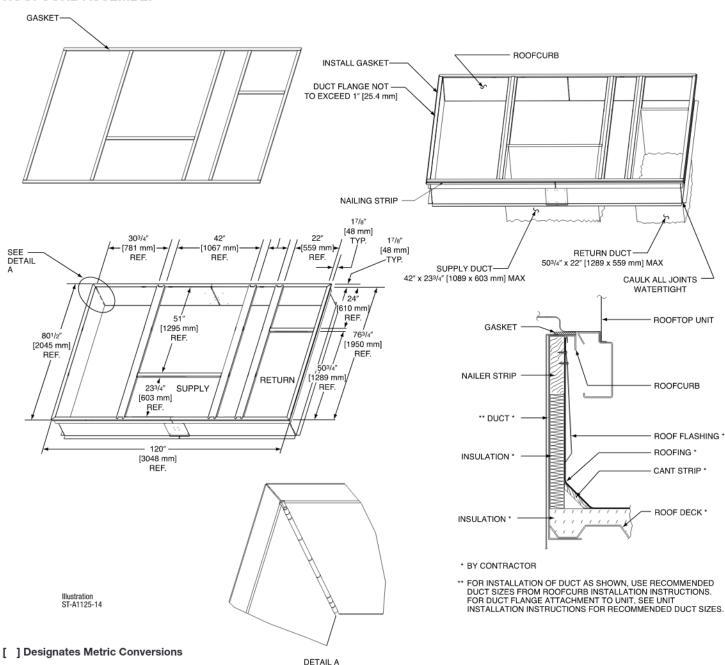

- Features **Honeywell** Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

RXRX-AW03 (Motorized damper kit for manual fresh air damper)

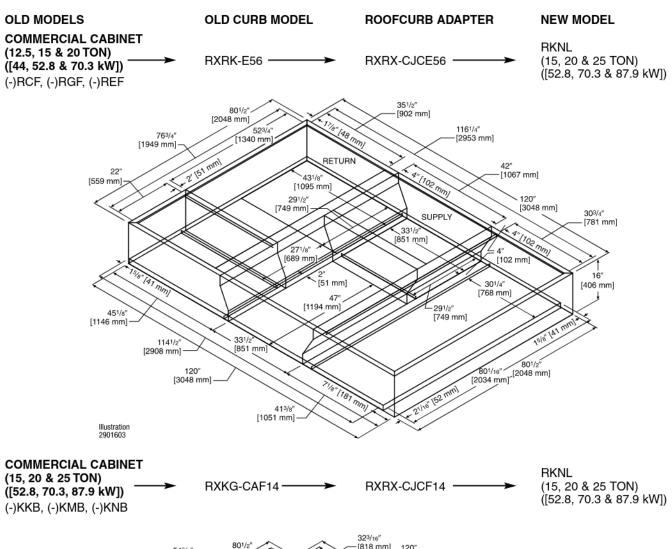
RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)

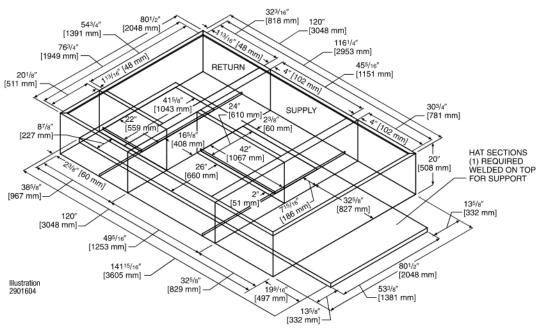

Illustration

ST-A1125-17

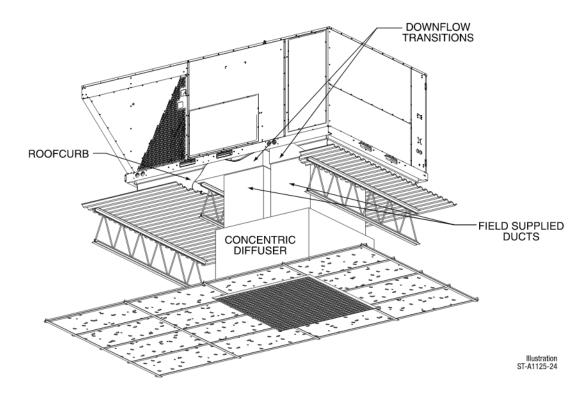

ROOFCURBS (Full Perimeter)

- ClimateMaster's new roofcurb designs can be utilized on 15, 20 and 25 ton [52.8, 70.3 and 87.9 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

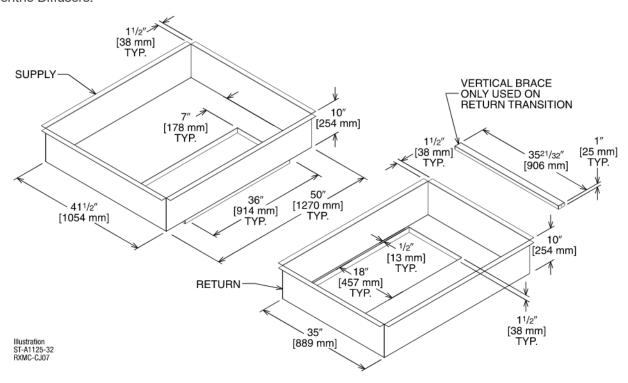

TYPICAL INSTALLATION



ROOFCURB ASSEMBLY

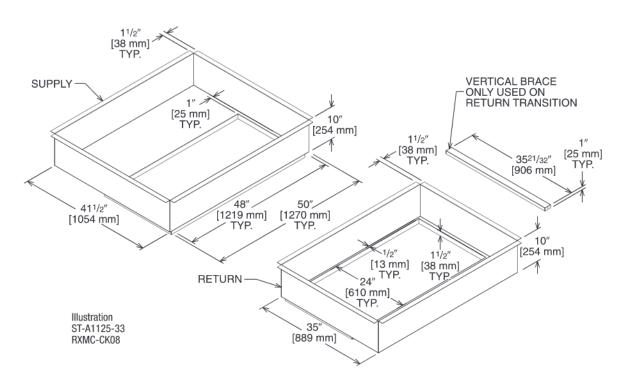


ROOFCURB ADAPTER

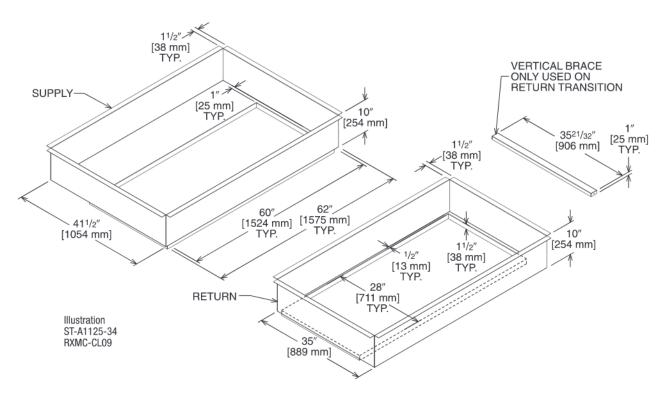

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

RXMC-CJ07 (15 Ton) [52.8 kW]

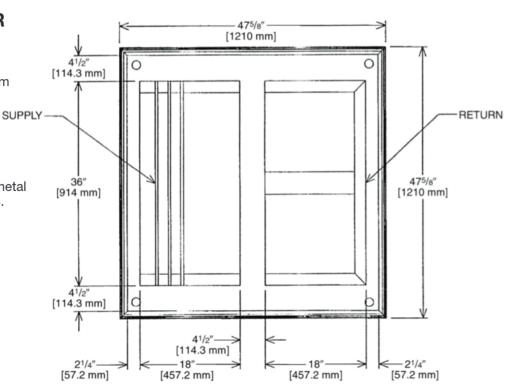

 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers.

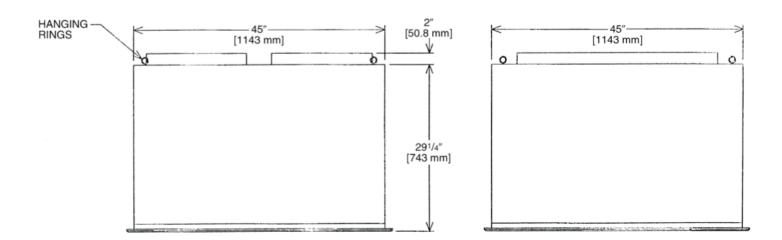
DOWNFLOW TRANSITION DRAWINGS (Cont.)


RXMC-CK08 (20 Ton) [70.3 kW]

■ Used with RXRN-AD86 Concentric Diffusers.

RXMC-CL09 (25 Ton) [87.9 kW]

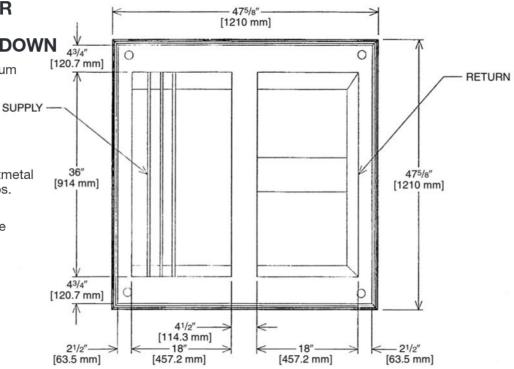

■ Used with RXRN-AD88 Concentric Diffusers.

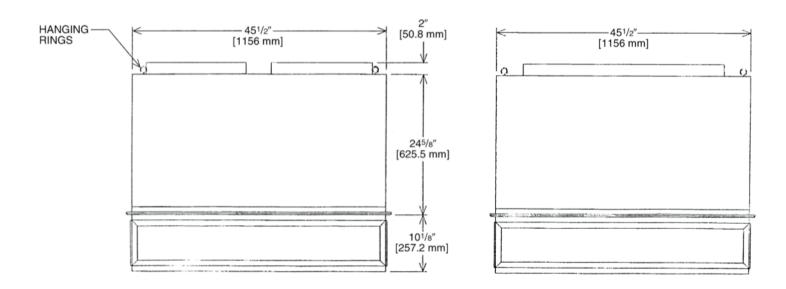


CONCENTRIC DIFFUSER RXRN-AD80 SERIES 15 TON [52.8 kW] FLUSH

 All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

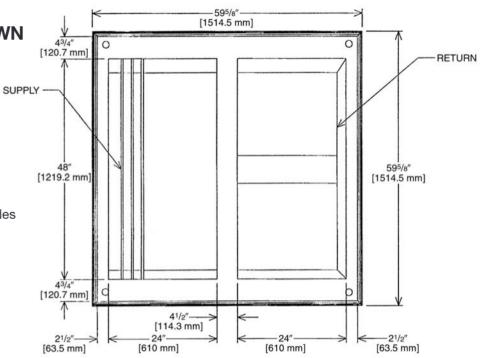

CONCENTRIC DIFFUSER SPECIFICATIONS

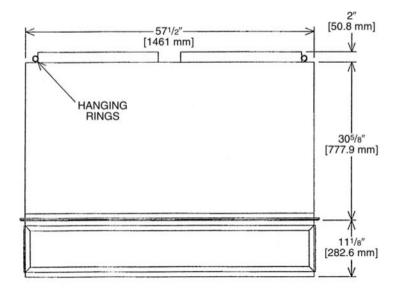

PART Number	CFM [L/s]	STATIC Pressure	THROW Feet	NECK Velocity	JET Velocity
	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
RXRN-AD80	6000 [2832]	0.42	40-50	1071	2230
NANN-ADOU	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

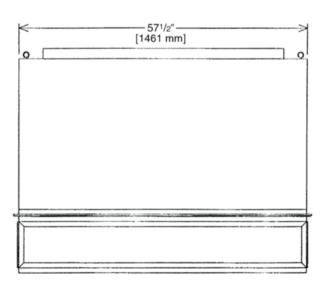
CONCENTRIC DIFFUSER RXRN-AD81 SERIES 15 TON [52.8 kW] STEP DOWN

All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

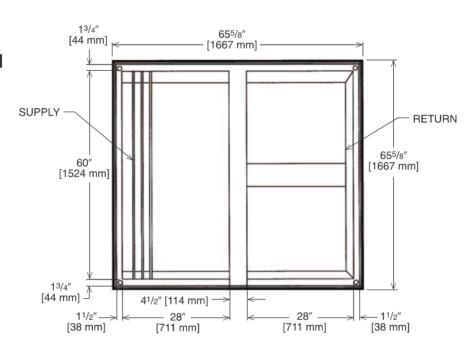

CONCENTRIC DIFFUSER SPECIFICATIONS

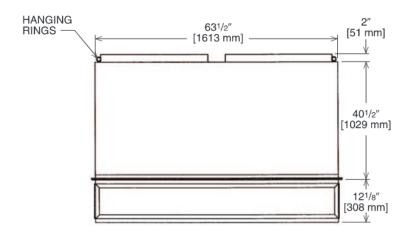

PART Number	CFM [L/s]	STATIC Pressure	THROW Feet	NECK Velocity	JET Velocity
	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
RXRN-AD81	6000 [2832]	0.42	44-54	1022	920 954 1022 1056 1090
HARIN-ADOT	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

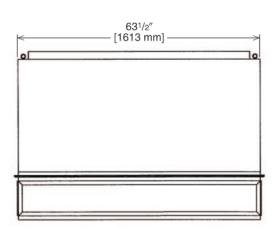

CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.




CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW Feet	NECK Velocity	JET Velocity
	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
RXRN-AD86	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010

CONCENTRIC DIFFUSER RXRN-AD88 SERIES 25 TON [87.9 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW Feet	NECK Velocity	JET Velocity
	10000 [4719]	0.51	46-54	907	907
	10500 [4955]	0.58	50-58	953	953
	11000 [5191]	0.65	53-61	998	998
RXRN-AD88	11500 [5427]	0.73	55-64	1043	1043
	12000 [5663]	0.82	58-67	1089	1089
	12500 [5898]	0.91	61-71	1134	1134
	13000 [6134]	1.00	64-74	1179	1179

Guide Specifications RKNL-G180 thru G300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.

b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO₂ sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 2, heat stage 3/ exhaust/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at \pm 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
- 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Gas Connections:

- a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.

23 81 19.13.I. Gas Heat

1. General

- a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
- b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
- c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
- d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

RKNL-G

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- c. Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
- d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- e. Compressor shall be factory mounted on rubber grommets.
- f. Compressor motors shall have internal line break thermal and current overload protection.
- g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air. The barometric relief damper shall include seals, hardware and hoods to relieve building pressure. Damper shall gravity close upon unit shut down.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single-enthalpy sensor shall be provided as standard. Outdoor air enthalpy set point shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - m. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - n. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.

2. Two-Position Damper

- a. Damper shall be a Two-Position Damper. Damper travel shall be from the full closed position to the field adjustable %open setpoint.
- b. Damper shall include adjustable damper travel from 25% to 100% (full open).
- c. Damper shall include single or dual blade, gear driven damper and actuator motor.
- d. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- e. Damper will admit up to 100% outdoor air for applicable rooftop units.
- f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
- g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
- h. Outside air hood shall include aluminum water entrainment filter.
- 3. Manual damper
 - Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Liquid Propane (LP) Conversion Kit
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.
 - e. Non-Powered convenience outlet.
 - f. Outlet shall be powered from a separate 115-120v power source.
 - g. A transformer shall not be included.
 - h. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.

RKNL-G

- i. Outlet shall include 15 amp GFI receptacle.
- j. Outlet shall be accessible from outside the unit.

7. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.
- 8. Thru-the-Base Connectors:
 - a. Kits shall provide connectors to permit gas and electrical connections to be brought to the unit through the unit basepan.
- 9. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust is shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- a. Full perimeter roof curb with exhaust capability providing separate airstreams for energy recovery from the exhaust air without supply air contamination.
- b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.

12. Outdoor Air Enthalpy Sensor:

a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.

13. Return Air Enthalpy Sensor:

a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

14. Indoor Air Quality (CO2) Sensor:

- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in wall mount with LED display. The set point shall have adjustment capability.

15. Smoke detectors:

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control
 panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

26 29 23.12. Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

ClimateMaster will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compresso	or	
3 Phace	Commercial	Ann

3 Phase, Commercial ApplicationsFive (5) Years **Parts**

3 Phase, Commercial Applications.....One (1) Year

Factory Standard Heat Exchanger 3 Phase, Commercial ApplicationsTen (10) Years Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

^{*}For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

RKNL-G

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

www.ClimateMaster.com