Common Issues with Geo Thermal Heat Pumps

Sean Hogan Technical Trainer

System Sizing

Size heat pump, loop field by rule of thumb

Size pump(s) by rule of thumb

Use prescriptive approach (square foot/ton)

Heat Load

 The amount of heat either gained or lost by a building due to outside ambient conditions and internal gains

A Typical House in Texas

1231 sq. ft. / 500 = 2.5 ton

A Crucial Error

The 500 square foot per ton approach is a short cut method that takes the two dimensional amount of flat floor space and presumes to predict the appropriate size of the air conditioning system.

What's missing in this approach?

What's missing?

The third dimension of the house!
What makes each house distinctly different?
Many characteristics including:

Design Considerations

Local codes

Windows

Skylights

Doors

Walls

Floor

Roof/ Attic

Infiltration

Internal gains

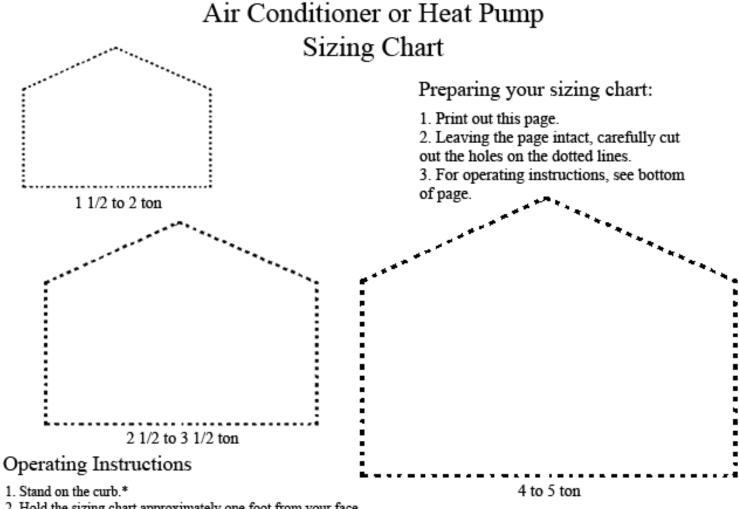
Ducts

Orientation/Exposure

Zoning

Fresh air requirements

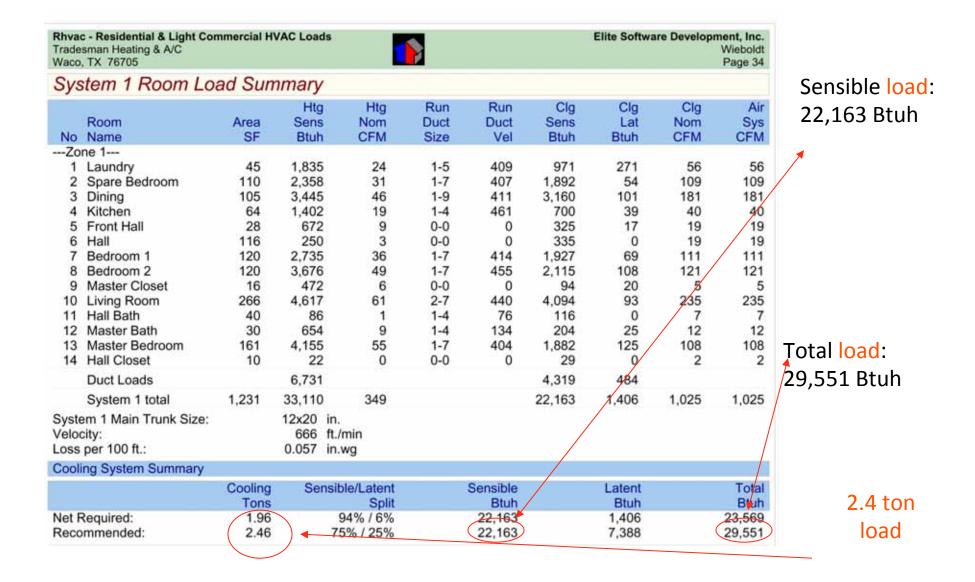
Existing duct system


Return system

Grilles and Registers

Manual J 500

"We do a modified Manual J"


- 2. Hold the sizing chart approximately one foot from your face.
- 3. Look at the house through each hole.
- 4. If the house fits in a hole; that's the size unit to use.

This quick reference tool is known as a Curb-u-lator[©]

Air Conditioner or Heat Pump Sizing Chart Preparing your sizing chart: Print out this page. 2. Leaving the page intact, carefully cut out the holes on the dotted lines. 3. For operating instructions, see bottom of page. 1 1/2 to 2 ton Operating Instructions 4 to 5 ton 1. Stand on the curb.*

- 2. Hold the sizing chart approximately one foot from your face.
- 3. Look at the house through each hole.
- 4. If the house fits in a hole; that's the size unit to use.

The Curb-u-lator[©] shows this house as 2 ½ to 3 ½ tons

Project Summary Entire House Tradesman Heating & A/C Services

Job: 001 Date: Apr 12, 2005 Bv:

Project Information

For:

Notes:

Design Information

Weather: Waco, TX, US

Simplified Average

Winter Design Conditions Summer Design Conditions

Outside db	26 70	°F	Outside db	99	°F
Inside db	70	°E	Inside db	99 75	°F
Design TD	44	°F	Design TD Daily range		°F
					07
			Relative humidity	50 29	%
			Moisture difference	29	or/lb

Heating Summary

Structure	24731	Btuh
Ducts	2920	cfm
Central vent (64 cfm)	3056	Btuh
Humidification	0	Btuh
Piping	0	Btuh
Equipment load	30707	Btuh

Infiltration

Method Construction quality

Fireplaces		U
	Heating	Cooling
Area (ft²)	1164	1164
Volume (ft³)	9312	9312
Air changes/hour	0.45	0.23
Foury AVF (cfm)	70	36

Heating Equipment Summary

Make Trade Model	Bryant Reliant 697C 697CN036-D		
Efficien		7.81	HSPF
Actual a Air flow Static p	output rature rise air flow	35400 29 1120 0.041 0.50	Btuh @ 47°F "F cfm cfm/Btuh in H2O

Sensible Cooling Equipment Load Sizing

Structure Ducts Central vent (64 cfm) Blower	15300 Btuh 3005 Btuh 1646 Btuh 0 Btuh	
Use manufacturer's data Rate/swing multiplier Equipment sensible load	1.00 19951 Btuh	_
Latent Casling Equip	ment I and Cinina	

Latent Cooling Equipment Load Sizing

Structure	1700	Btuh
Ducts	216	Btuh
Central vent (64 cfm)	1262	Btuh
Equipment latent load	3178	Btuh
Equipment total load	23129	Btuh
Req. total capacity at 0,70 SHR	2.4	ton

Cooling Equipment Summary

Make Bryant Trade Reliant 697C Cond 697CN036-D	
Coil FK4CNF001	
Efficiency Sensible cooling Latent cooling Total cooling Actual air flow Air flow factor Static pressure Load sensible heat ratio	12.5 SEER 23520 Btuh 10080 Btuh 33600 Btuh 1120 cfm 0.061 cfm/Btuh 0.50 in H2O 0.86

Printout certified by ACCA to meet all requirements of Manual J 8th Ed.

Sensible

19,951

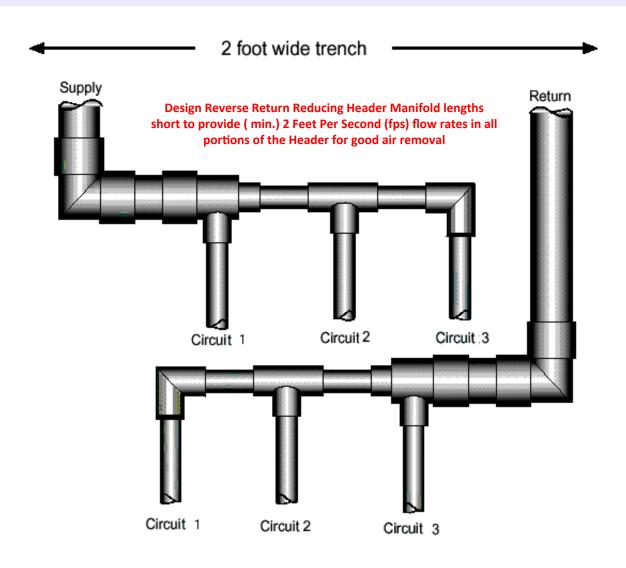
Total

23,129

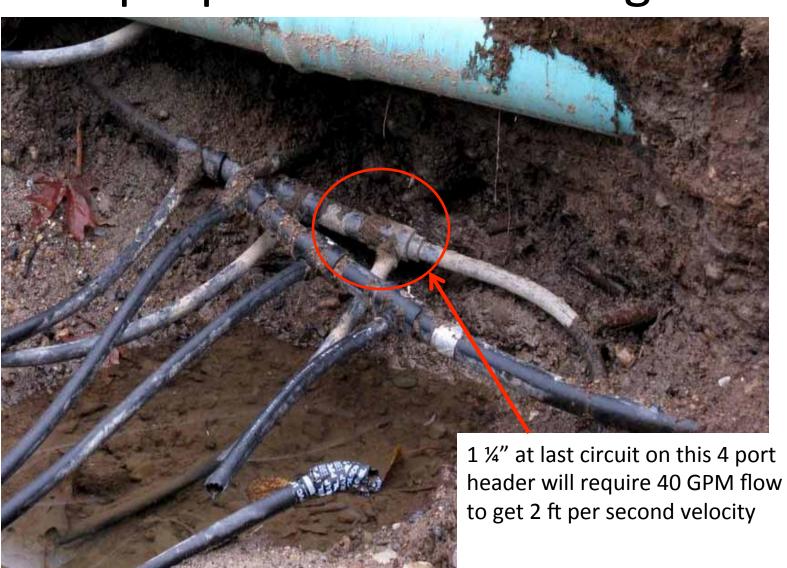
2.4 tons

Determination of heating & cooling loads
Selection of a properly sized heat pump system
Size the loop to support the heat pump with accurate soil descriptions
Selection & design of air distribution system

Improper or Inadequate Loop Flushing


"I saw no more bubbles, I must be done"

• "I flushed for the entire 30 minutes"


"The loop pumps can flush the system"

"Why won't my sump pump & garbage can work"

Air Removal part of every design Reverse Return piping method

Improper Manifold Design

Reverse Return Headering

System doesn't work must be the heat pump

Flush Cart

Custom P-handle cart, powder coated Bag filter (inside tank) Fluid level indicator with o-ring Power drain Fill valve 2" Flexible connection between tank and pump 13 Gallon tank Pneumatic tires

GFCI and water resistant switch

20 ft cord

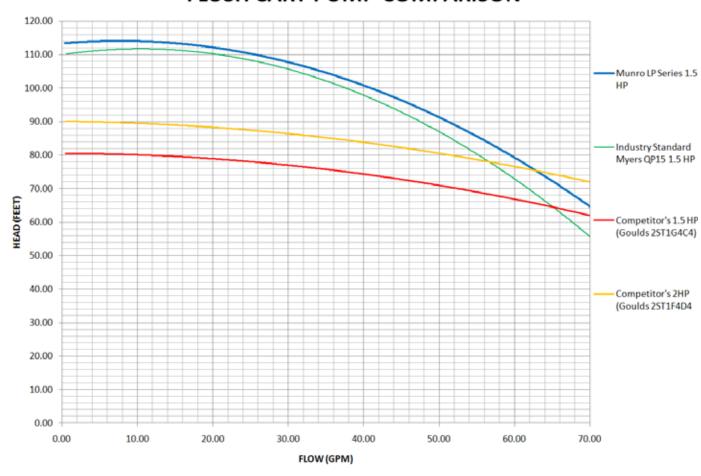
Quick connecthose fittings

Pump and dump valve

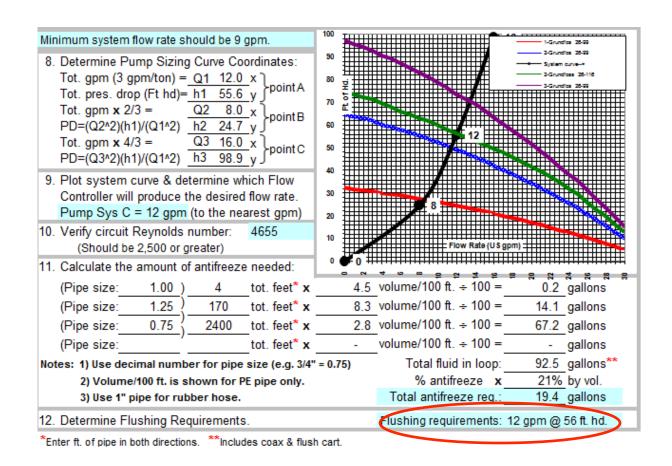
1.5 HP pump

PT port for ____ pressure measurement

Power flushing capability


Drain valves

Includes two 10 ft hoses with quick connect fittings (not shown)


Flush Cart Pump

- Munro LP Series Pump
 - 1.5 HP, 115V, 13.7 FLA

FLUSH CART PUMP COMPARISON

Calculate Flushing requirement

When your flush cart is not enough.

Air in closed loop systems can lead to the following problems:

- Noise in the piping and heat pump
- Inadequate circulator performance
- Inadequate heat output from the heat pump
- Accelerated corrosion due to oxygen in contact with ferrous metals
- Circulator noise or failure due to improper lubrication
- Complete loss of flow and heat output due to large air pockets

Insufficient Antifreeze

 Heating dominant climates could cause freeze damage to heat exchanger.

 Ice build up in Koax, slows flow rate which lowers fluid temp faster and faster

Ice could damage loop pump(s)

Frozen Koax

Excessive Antifreeze

 Diminished temperature transfer, almost like an insulator

 Can be more difficult to pump and or have turbulent flow in loop field

If inhibited antifreeze is used, can coat Koax

"My Unit Keeps Faulting"

- Didn't pull fault code
- Didn't cut the FP1 (now LT1) jumper on closed loop antifreeze system
- Can't provide start up or troubleshooting form
- P/T ports not installed
- My flow rate is greater than catalog spec's

Air Flow Issues:

- duct sizing (too large or small)
- Air throw from registers inadequate
- Closed registers
- Inadequate return or dirty filter
- Heat pump used during construction plugged coil

