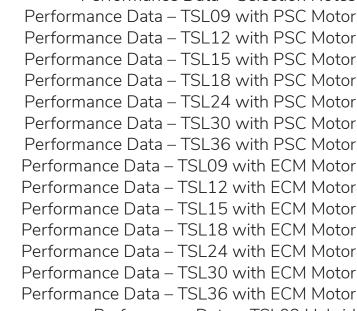
# Tranquility® Ducted Vertical Stack (TSL) Series

Submittal Data

Models TSL09-36, 60Hz - HFC-410A



# **TSL Vertical Stack Series**


| Introduction                                      |
|---------------------------------------------------|
| Features, Options and Accessories                 |
| iGate® 2 Communicating Controls Powered by CXM2   |
| iGate® 2 Communicating Controls Powered by DXM2.5 |
| iGate® 2 Communicating (AWC) Thermostat           |
| myUplink – Web and Mobile Interface               |
| Constant Volume (CV) – ECM                        |
| Constant Torque (CT) – ECM                        |
| vFlow® Modulating Water Valve                     |
| Selection Procedure                               |
| TSL Series Nomenclature – D Cabinet               |
|                                                   |

TSL Hybrid Series Nomenclature – E Cabinet TSL Series Nomenclature – Chassis 

TSL Series Accessory Nomenclature 

Performance Data – AHRI/ASHRAE/ISO 13256-1. English (I-P) Units Performance Data – AHRI/ASHRAE/ISO 13256-1. Metric (S-I) Units

> Performance Data - Selection Notes



Performance Data – TSL09 Hybrid Performance Data – TSL12 Hybrid Performance Data – TSL15 Hybrid Performance Data – TSL18 Hybrid 



48

49

50

51

52

68

69

70 71

72 73

74 75

81

# TSL Vertical Stack Series

Performance Data – TSL24 Hybrid Performance Data – TSL30 Hybrid

Performance Data – TSL36 Hybrid

TSL Series Wiring Diagram Matrix

Standard Unit - Exploded View

Hybrid Unit - Exploded View

Leader/Follower Cabinet

D Cabinet Dimensions

**E Cabinet Dimensions** 

Antifreeze Correction Table

Performance Data - Correction Tables



| Hybrid Performance Data – Correction Tables          | 54 |
|------------------------------------------------------|----|
| Blower Performance Data – TSL09 (PSC/ CT ECM/CV ECM) | 55 |
| Blower Performance Data – TSL12 (PSC/ CT ECM/CV ECM) | 56 |
| Blower Performance Data – TSL15 (PSC/ CT ECM/CV ECM) | 57 |
| Blower Performance Data – TSL18 (PSC/ CT ECM/CV ECM) | 58 |
| Blower Performance Data – TSL24 (PSC/ CT ECM/CV ECM) | 59 |
| Blower Performance Data – TSL30 (PSC/ CT ECM/CV ECM) | 60 |
| Blower Performance Data – TSL36 (PSC/ CT ECM/CV ECM) | 61 |
| Performance Data – Ducted CV ECM                     | 62 |
| Physical Data                                        | 63 |
| Hybrid Physical Data                                 | 64 |
| Electrical Data – PSC Motor (208/230V) and (265V)    | 65 |
| Electrical Data – CV ECM Motor (208/230V) and (265V) | 66 |
| Electrical Data – CT ECM Motor (208/230V) and (265V) | 67 |

E Cabinet Slot Dimensions and Riser Arrangements
Typical Cabinet with "G" Panel Installation
Typical Recessed Cabinet w/"G" Panel and Frame Installation
Hinged "G" Style Return Air Panel – AVHSG Series

"L" Style (Flush Mounting) Return Air Panel – AVHRL Series

80

D Cabinet Slot Dimensions and Riser Arrangements

Supply Air Openings and Grilles 82
Thermostats 84
TSL Cabinet Options 86

Hose Kits and Stands

Riser Definitions 87

D Cabinet

# TSL Vertical Stack Series

Riser GPM Definitions and Sizing 88

Riser Diameter Sizing 89

Swage Riser Length Definitions and Sizing 90

Swage Riser Extension Definitions and Calculations 91

Slab Hole Chart - 3 Pipe 92

Shipping 93

96

Engineering Specifications

Pre-Engineered Factory Design Specials 108

Performance Sheet 109

Revision History 110



### Introduction

# TRANQUILITY® VERTICAL STACK (TSL) SERIES WITH EARTHPURE® REFRIGERANT

The Tranquility® Vertical Stack (TSL) Series offers an innovative, labor-saving solution for spaces where individual, quiet control of the heating and cooling systems is important. Vertical stack products are designed for multistory buildings where floor to floor footprints are similar. They utilize vertically mounted water lines known as risers installed in a wall or mechanical shaft to minimize space, material, and connections. The TSL Series system consists of two major components – a cabinet located behind a finished wall and a slide in and out refrigeration chassis. This allows for the riser and cabinet pieces of the system to be installed early in the construction phase so they can be framed around without exposing the refrigeration chassis to the harsh construction environment. At the finishing stages of construction when the system is ready to be commissioned, the slide in chassis is quickly and easily installed. The TSL Series system offers a proven solution that is designed and manufactured in America, exceeds ASHRAE 90.1 efficiencies, contractor/technician friendly, has a compact foot print minimizing its impact on salable space, maximizes comfort levels of occupants, and has been proven as a preferred system in thousands of multi-story building applications across North America.

The TSL series is available in seven sizes ranging from 3/4 ton (2.6 kW) through 3 tons (10.6 kW). The cabinet has been designed with flexibility offering five different supply air locations and four different riser connection locations that can be factory or field configured. The chassis is designed for quick installation with two water hose connections and three or four electrical quick connectors. Both pieces of the system offer options to increase a buildings energy efficiency. Integrated water control options save system watts by preventing over pumping both when the unit is in operation and when its not. ECM fan motors maximize the systems airflow movement efficiency. Industry exclusive advanced communicating controls offer reduced startup and commissioning time by providing an easy to read gateway into the systems operating conditions.

High-end condos/apartments/hotels demand the highest level of occupant comfort. Not only is it important for the system to provide heating, cooling, and dehumidification it must do so at quiet operating levels. ClimateMaster's double isolation compressor mounting system makes the TSL Series the quietest vertical stack unit on the market. Compressors are mounted on specially engineered sound-tested isolation grommets to a heavy gauge base pan, which is then isolated

from the cabinet base with a second layer of grommets under the condensate pan to provide superior sound attenuation by design. ClimateMaster offers an UltraQuiet sound attenuation package and cabinet isolation pad to meet the demand of the most sound sensitive applications.

iGate<sup>®</sup> 2 technology provides technicians an interface into the operation of the system in real time without the need for hard tooling. On board advanced controls communicate the key operating system temperatures allowing technicians to start-up, commission, and service the equipment remotely by smart phone or website via the cloud. Communication can also be done at the unit via a communicating thermostat or handheld service tool. Not only does iGate 2 monitor current performance, it also allows the functionality to make system adjustments and captures operating conditions at time of fault. All this information is displayed in an easy to read format maximizing the usability of the experience.

vFlow® variable water flow technology takes water flow control and system operating range to the next level. The functionality of an on/off water valve and water flow regulator are combined into one modulating water valve component. With a modulating valve water flow is controlled to maintain a set temperature difference between entering and leaving water while in normal operation. When in extreme entering water conditions the vFlow system switches its operation to maintain a leaving water temperature. With the functionality to control water flow to a leaving water temperature, the TSL's operational range is expanded beyond other water source heat pumps with an ability to function in heating or cooling modes across the entire entering water range of 30–120°F. While not in operation the valve remains closed preventing excessive water flow. vFlow increases system water flow efficiency by only allowing the right amount of water flow needed when it needs. Advanced iGate controls paired with the vFlow system provide functionality and efficiency unmatched in the marketplace.

Hybrid hydronic heating combines the benefits of water source heat pumps and hydronic fan coils into one system. In cooling mode the system performs as normal using a compressor and refrigerant coil. In the heating mode the system uses a second hydronic coil for heating. By design, the system reduces compressor cycling, consumes less power at the unit in heating mode, and does not require a reversing valve to be used. Hybrid systems are an ideal fit for applications where hot water is provided as a domestic utility or can be generated high efficiently.

The TSL Vertical Stack Water-Source Heat Pump Series provides energy efficiency with superior sound attenuation by design while offering options flexibility, field convertibility, and unmatched industry leading technology.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014.

LC1007 - 5 Page \_\_\_\_\_ of \_\_\_\_

### Features, Options and Accessories

### **FEATURES**

- Sizes 09 (3/4 ton, 2.6 kW) through 36 (3 ton, 10.6 kW)
- Environmentally-friendly EarthPure® (HFC-410A) zero ozone depletion refrigerant
- High efficiency rotary and scroll compressors
- Exceeds ASHRAE 90.1 efficiencies
- Removable chassis allows staged installation and ease of maintenance
- Coaxial heat exchanger
- Galvanized steel cabinet
- Chassis rests on rubber grommeted isolated condensate pan for vibration reduction
- Double isolation of compressor for quiet operation
- TXV metering device
- Cabinet construction for unit or remote-mounted controls
- PSC fans capable of two speeds
- Microprocessor controls with 8 standard safeties
- Unit Performance Sentinel performance monitoring system
- Integrated drain pan with condensate overflow sensor
- Field convertible supply air on all sides and the top
- Field convertible riser supply, return, and condensate locations on the left, right, or back sides
- iGate® 2 Communicating Controls Powered by CXM2
  - Multiple communication pathways,
    - Cloud-based connectivity via iGate 2 Wi-Fi communicating color touch screen thermostat for remote monitoring, access, and diagnosis. Including the new functionality for contractors/ building engineers to monitor and make mass changes on multi-unit systems
    - o Connect directly to the system with use of a handheld service tool
  - Provides real-time unit operating conditions
  - Reduces start-up, commissioning, and service time by removing the need for hard tooling to take temperature measurements
  - Captures operating conditions in the event of a safety shutdown

### **OPTIONS**

- iGate® 2 Communicating Controls Powered by DXM2.5
  - Includes all of the features listed above for CXM2 controls including cloud-based connectivity via iGate 2 Wi-Fi communicating color touch screen thermostat for remote monitoring, access, and diagnosis
  - Provides direct control over intelligent Constant Volume (CV) ECM fan motor
- vFlow<sup>®</sup> modulating water flow
  - Modulates water flow to maintain a water temperature differential
  - Changes operation to modulate to a leaving water temperature during extreme entering water temperatures
  - Provides ultimate variable water flow control
  - Functionally operates as both a water flow regulator and water close off valve
- 2" Filter Rail to support higher indoor air quality filters
- BACnet (MSTP), Modbus and Johnson N2 compatibility options for DDC controls
- Factory configured supply air openings with or without dust protection
- Full port shut-off valves with memory stop, for supply and return risers.
- Unit integrated power disconnect
- Field quick connect thermostat whips in 15', 25', and 35' lengths
- Factory mounted high density rubber isolation pad
- Easy to clean rust prohibitive stainless steel drain pans
- High efficient ECM fan motors
  - Intelligent Constant Volume (CV) ECM motors for ultimate airflow control
  - Entry level Constant Torque (CT) ECM motors that provide efficiency at a value
- Extended range insulation for geothermal applications
- Auto flow regulators that limit water flow to the unit preventing system over pumping
- Two-way motorized water valves that prevent water flow through the unit when it is not in operation increasing system pumping efficiency (fail opened of fail closed options)
- Three-way motorized water valves that allow continues water flow through the water loop, reducing pressure drop when the unit is not in operation (usually applied on the top floor of a system)
- Internally mounted water pump for single pipe systems
- Corrosive resistant cupro-nickel water heat exchanger
- RIB relay (sizes 09-18) box for quiet contactor closer
- UltraQuiet sound attenuation package
- Tin-lated air coils for added protection from formicary corrosion

### Features, Options and Accessories, Cont'd.

### **ACCESSORIES**

- Copper risers
  - Swedged ends ready for quick drop in connection when brazing is used
  - End treatment ready for crimped (torch-less) style connections
- Unit stands that prevent clearance issues with tall baseboards
- Single, Double, and Double deflection with opposed dampers supply air grilles
- Fresh air frame kit for connection to outdoor air ducting
- Flush Mounted Return Air Panel (L Style) with fixed frame and removable panel for easy chassis access/ removal
  - Available in Bright White or Polar Ice paint colors
- Attractive return air panel with hinged access door (G style)
  - Key Lock Option
  - Available in Bright White or Polar Ice paint colors
- Stainless steel braided hose kits for connection from piping risers to the chassis
- Selection of thermostats including programmable, Wi-Fi, and color touch screen
- Filters 1" (Merv 8 or 11) or 2" (Merv 8 or 13)



### iGate® 2 Communicating Controls Powered by CXM2

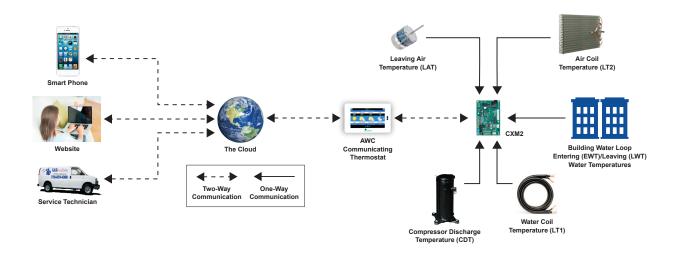
# iGate® 2 Communication – Cloud connected, web-enabled information gateway to monitor, control, and diagnose your system



Tranquility® Vertical Stack (TSL) Series is equipped with industry-first, iGate® 2 communication information gateway that allows users to interact with their water-source system in easy to read clear language.

Monitor/Configure – Installers can configure from the myUplink PRO website, mobile app, iGate 2

Communicating (AWC) Thermostat, or diagnostic tool, including: Unit family, size, accessory configuration, and demand reduction (optional, to limit unit operation during peak times). Users can look up the current system status: temperature sensor readings and operational status of the blower.


Precise Control – The new CXM2 board enables intelligent, 2-way communication between the CXM2 board and smart components like the communicating thermostat and diagnostic tool. The advanced CXM2 board uses information received from the temperature sensors to precisely control operation to deliver high efficiency, reliability and increased comfort.

**Diagnostics** – iGate 2 takes diagnosing water source heat pump units to a next level of simplicity, by providing a dashboard of system and fault information, in clear language, on the AWC Communicating Thermostat, handheld service tool and the web portal/mobile app on the internet.

iGate 2 Thermostat Service Warnings notify the homeowner and contractor of a fault and displays fault descriptions by app notifications/email with possible causes. Additionally, the current system status can be viewed graphically on the web portal and mobile app.

In iGate 2 Service Mode, the service personnel can access fault description, possible causes and most importantly, the conditions (temp, flow, i/o conditions, configuration) at the time of the fault. Manual Operation mode allows the service personnel to manually command operation for any of the thermostat outputs, blower speed, to help troubleshoot specific components. This operation can either be conducted at the unit with a communicating thermostat/diagnostic tool or remotely with mobile app/website when the AWC Communicating Thermostat controls are used.

With an iGate 2 communicating system, users and contractors have a web-enabled gateway to system information never before available and exclusive to ClimateMaster products.



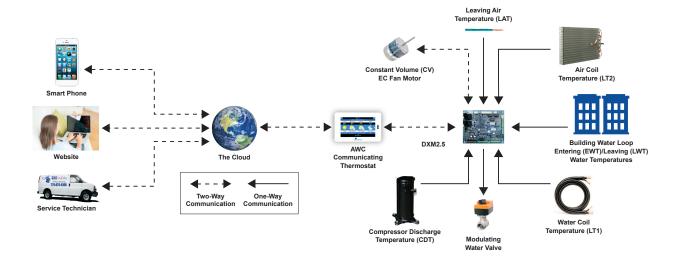
### iGate® 2 Communicating Controls Powered by DXM2.5

# iGate® 2 Communication – Cloud connected, web-enabled information gateway to monitor, control, and diagnose your system



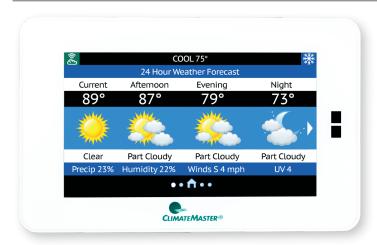
Tranquility® Vertical Stack (TSL) Series is equipped with industry-first, iGate® 2 communication information gateway that allows users to interact with their water-source system in easy to read clear language AND delivers improved reliability/efficiency by precisely controlling smart components.

Monitor/Configure – Installers can configure from the myUplink PRO website, mobile app, iGate 2 Communicating AWC Thermostat, or diagnostic tool, including: Airflow, unit family, size, accessory configuration, and demand reduction (optional, to limit unit operation during peak times). Users can look up the current system status: temperature sensor readings and operational status of the blower.


Precise Control – The new DXM2.5 board enables intelligent, 2-way communication between the DXM2.5 board and smart components like the communicating thermostat/diagnostic tool and constant volume (CV) EC fan motor. The advanced DXM2.5 board uses information received from the smart components and temperature sensors to precisely control operation of the variable speed CV EC fan to deliver higher efficiency, reliability and increased comfort.

**Diagnostics** – iGate 2 takes diagnosing water source heat pump units to a next level of simplicity, by providing a dashboard of system and fault information, in clear language, on the AWC Communicating Thermostat, handheld service tool and the web portal/mobile app on the internet.

iGate 2 Thermostat Service Warnings notify the homeowner and contractor of a fault and displays fault descriptions by app notifications/email with possible causes. Additionally, the current system status can be viewed graphically on the web portal and mobile app.


In iGate 2 Service Mode, the service personnel can access fault description, possible causes and most importantly, the conditions (temp, flow, i/o conditions, configuration) at the time of the fault. Manual Operation mode allows the service personnel to manually command operation for any of the thermostat outputs, blower speed, to help troubleshoot specific components. This operation can either be conduct at the unit with a communicating thermostat/diagnostic tool or remotely with mobile app/website when the AWC Communicating Thermostat controls are used.

With an iGate 2 communicating system, users and contractors have a web-enabled gateway to system information never before available and exclusive to ClimateMaster products.



### iGate® 2 Communicating (AWC)Thermostat

iGate® 2 Communication – Cloud connected, web-enabled information gateway to monitor, control, and diagnose your system



The iGate® 2 Communicating (AWC) Thermostat is innovating the future of comfort technology, one building at a time. The inspired design of the touch screen interface allows you to see real-time data for the efficiency and health of your system, with early warnings for potential system faults. The cloud based information gateway allows technicians to remotely diagnose system issues before occupants even know there is a problem. Control and monitor the system in your home or business from anywhere in the world with an easy to use app on your phone.

### Features with Efficiency in Mind



#### **Touch Screen Interface**

A brilliantly customizable touch screen monitor for simple control.



#### **Seamless Integration**

Between your iGate® 2 Communicating (AWC) Thermostat and Tranquility comfort system.



### (Mobile) Remote System Control

Control temperature and schedule from anywhere in the world.



#### **Early Fault Warnings**

Alerts you and your contractor of potential system faults in the future.



#### Remote Diagnostics

Enable the contractor to remotely diagnose system issues, adjust system settings, and reset faults.



#### Real-Time Operations Data & System Schematics

Access simply via the myUplink Pro Account and web portal to view system diagrams with current operating temperatures.



#### Revenue Stream

HVAC professionals can offer owners service contracts with remote monitoring and diagnosis capabilities without the large expense of a building management system.



### HVAC Professional | User Experience



The iGate® 2 is more than just a smart thermostat for your residential or commercial customer, it's a business opportunity. Our new thermostat works with your customers' Tranquility comfort systems to provide the most efficient link between their system and

your services. The customization of monitoring from the myUplink PRO web portal or phone app account allows for continuous system monitoring, analysis, repair recognition, and early warnings for potential system faults that are sent to you and your customer.



#### **Benefits**

- Remote login from anywhere, anytime from any internet connected device
- View system fault history with possible root causes
- Information is available for contractors to troubleshoot and diagnosis systems remotely
- Secure internet connection keeps homeowner information private
- Access thermostat(s) through Android and iPhone mobile apps

### Homeowner | User Experience



The iGate® 2 combines a Wi-Fi thermostat and advanced unit controls to communicate the systems operation information to the cloud. From any internet connected device or smart phone, homeowners can control and monitor there systems from anywhere in the

world. iGate 2 offers homeowners peace of mind their systems are operating at peak performance with advanced operational performance issue notifications. HVAC professionals get notifications when systems are operating out of range. They can log in remotely to check system faults, review current operating conditions, and diagnosis issues remotely. This gives the HVAC technician the upper hand when showing up to perform service, saving time which in turn saves money.



#### **Benefits**

- Communicates personal settings and reminders through the iGate 2 communication system
- Easy-to-use, full-color, high-resolution interface
- Sleek, intuitive button control
- Secure internet connection keeps your information private
- Contains unit model, serial number and your HVAC professionals contact information
- System monitoring automatically contacts HVAC system providers when service is needed

### Constant Volume (CV) ECM

The Intelligent Constant Volume (CV) ECM blower motor provides unmatched functionality that saves installing and service technicians time while also providing increased comfort levels to occupants.

CV ECM's are programed to maintain a constant CFM across a wide range of external static pressures (ESP). This functionality differs from traditional PSC or even Constant Torque (CT) ECM's. With traditional PSC and CT ECM fan motors, as ESP is increased CFM is reduced. To increase or decrease the speed of the fan motor requires a fan motor switch or a technician to wire into a different motor tap. CT ECM's provide increased efficiency over PSC motors but with no additional functionality. With a CV ECM, as changes in ESP occur the fan motor will adjust its speed to deliver the desired CFM (within its operating range). This ensures the system is delivering the airflow and capacity it was designed for.

A major benefit of the CV ECM over other fan motor types its ability to adjust airflow remotely through the iGate® 2 web portal/mobile app or directly at the unit with a communicating diagnostic service tool or thermostat. Airflow levels can be adjusted in increments of 25 CFM from the units minimum and maximum CFM range (see CV ECM configuration table for details). This functionality allows technicians to dial in airflow during start-up and commissioning via an easy to use service tool. During operation occupants may have a desire for airflow adjustments. Reducing CFM can reduce airflow sound levels and increase cooling dehumidification (latent capacity). Technicians can easily make these adjustments without making wiring changes reducing service time with minimal disruption to the occupants.

The fan motor operating modes include:

- First Stage Cooling (Y1 & O)
- Second Stage Cooling (Y1, Y2, & O)
- First Stage Heating (Y1)
- Second Stage Heating (Y1 & Y2)
- Fan (G with no Y1, Y2, or W)

The CV ECM motor includes "soft start" and "ramp down" features. The soft start feature gently increases the motors rpm at blower start up resulting quieter blower start cycles. Likewise, the ramp down feature allows the blower to slowly decrease rpm to a full stop resulting in a quieter end to each blower cycle. The ramp down feature (also known as



Airflow Configuration Screen on Mobile App

the heating or cooling "Off Delay") also has the functionality to be field selected by the technician in the allowable range of 0 to 255 seconds.

### Constant Torque (CT) ECM

### The Constant Torque (CT) ECM blower

**motor** combines high efficient airflow movement with simplistic operation.

The CT ECM is designed to maintain a fixed RPM. The delivered unit airflow will depend on the total static applied on the system (ductwork, grilles, etc.). This is similar to the operation of a PSC motor and differs from the CV ECM motor which will adjust RPM to deliver a constant CFM. Also, like a traditional PSC blower motor, the CT ECM blower motor has 4-5 Speed Taps depending on unit size (see blower tables for details). The blower comes factory wired into two speed taps. To adjust speeds in the field a technician manually changes the electrical connection either at the fan motor or connecting wire harness (varies by size).

The blower offers a "soft start" feature. Soft start gently increases the blower motors rpm resulting in quieter operation during start up cycles. The blower does not include a "ramp down" feature like the CV ECM motor. When the fan call is removed the blower will immediately shut down. If the ramp down feature is required please select a CV ECM blower.

The CT ECM blower is not a communicating component and does not contain the high functionality like the CV ECM blower does. It offers an entry level ECM option for applications seeking high efficiency with simplistic functionality. Constant Volume (CV) and Constant Torque (CT) styles of ECM blower motors are both equally efficient in their operation. The difference between the two motors is in their operational functionality.





### vFlow® Modulating Water Valve

### vFlow® Internal Variable Water Flow

Industry-first, Built-in vFlow® provides an ultra-high-efficient internal water flow system. It saves installers time and labor by avoiding installing bulky valves or flow regulators in the field. Multi-unit installations are also much simpler with vFlow systems, as the units automatically adjust water flow across the system.

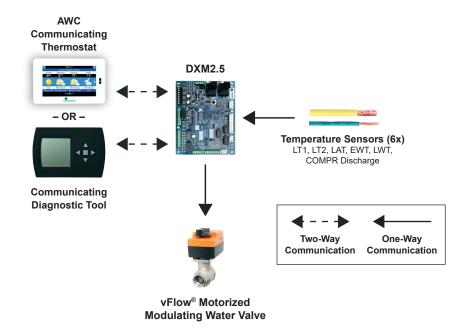
vFlow is enabled by iGate® 2, which facilitates intelligent communication between the thermostat, DXM2.5 control, sensors and modulating valve to make true variable water flow a reality.

In applications using the vFlow water flow control, when the motorized modulating valve slows down the external pump, consumes fewer watts, thus saving more energy.

### vFlow® delivers four main benefits:

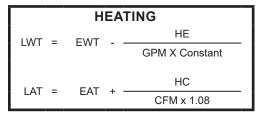
- 1. One component replaces 2 way motorized valve and auto flow regulator
- 2. Superior reliability by varying the water flow to deliver more stable operation
- 3. Higher cost savings by varying water flow (and pump watt consumption) to match the unit's mode of operation
- 4. Allows unit to safely operate in cooling mode or heating mode from 20°F to 120°F

### **Modulating Water Valve Operation:**


When the unit is in cooling or heating, the DXM2.5 controller monitors the entering and leaving water temperature. Based on the desired water temperature differential (delta T), the DXM2.5 sends a voltage signal to the valve which correlates to a percentage open in order to achieve the water flow needed. As conditions change the voltage signal will readjust the valve for the needed water flow.

The modulating water valve is factory set for a water delta T of 10°F for cooling operation and 7°F for heating operation. This default setting is estimated to be approximately 3 GPM of water flow per ton of load capacity. Installers can change the water flow by adjusting the delta T upward for lower flow or downward for higher flow by using the communicating thermostat or service tool. Please see unit IOM for full instructions.

At low cooling EWT's and high heating EWT's the DXM2.5 software overrides the delta T settings and adjusts the valve to operate to a LWT of no less than 60°F for cooling and no greater than 70°F for heating.


Units with the modulating water valve will operate at EWT's from 30°F to 120°F in BOTH cooling and heating. When there is no demand for cooling or heating, the valve will be fully closed or can be field configured to remain slightly open allowing some water to pass through.

vFlow water flow controls are unmatched in the market and exclusive to ClimateMaster vertical stack products.



### **Selection Procedure**

#### **Reference Calculations**



| COOLING    |            |                |      |         |  |  |
|------------|------------|----------------|------|---------|--|--|
| LWT =      | FWT +      | HR             | LC = | TC - SC |  |  |
| LVVI -     | LVVI T     | GPM x Constant | LO - | 10-30   |  |  |
| LAT (DB) = | EAT (DD)   | HC             | S/T  | SC      |  |  |
| LAI (DB) = | EAT (DB) - | CFM x 1.08     | 3/1  | TC      |  |  |

Constant = 500 for water, 485 for antifreeze

### Conversion Table - to convert inch-pound (English) to S-I (Metric)

| Airflow                     | Water Flow                      | Water Pressure Drop             |                                 |
|-----------------------------|---------------------------------|---------------------------------|---------------------------------|
| Airflow (L/s) = CFM x 0.472 | Water Flow (L/s) = gpm x 0.0631 | ESP (Pa) = ESP (in of wg) x 249 | PD (kPa) = PD (ft of hd) x 2.99 |

### **Legend and Glossary of Abbreviations**

| Abbreviations | Descriptions                                        |  |  |  |  |  |
|---------------|-----------------------------------------------------|--|--|--|--|--|
| BTUH          | BTU (British Thermal Unit) per hour                 |  |  |  |  |  |
| CDT           | Compressor discharge temperature                    |  |  |  |  |  |
| CFM           | Airflow, cubic feet per minute                      |  |  |  |  |  |
| СОР           | Coefficient of performance = BTUH output/BTUH input |  |  |  |  |  |
| CT ECM        | Electronic commutated constant torque fan motor     |  |  |  |  |  |
| CV ECM        | Electronic commutated constant volume fan motor     |  |  |  |  |  |
| DB            | Dry bulb temperature, °F                            |  |  |  |  |  |
| EAT           | Entering air temperature                            |  |  |  |  |  |
| EER           | Energy efficient ratio = BTUH output/Watt input     |  |  |  |  |  |
| ESP           | External static pressure, inches w.g.               |  |  |  |  |  |
| EWT           | Entering water temperature                          |  |  |  |  |  |
| FPT           | Female pipe thread                                  |  |  |  |  |  |
| GPM           | Water flow in U.S., gallons per minute              |  |  |  |  |  |
| НС            | Air heating capacity, BTUH                          |  |  |  |  |  |
| HE            | Total heat of extraction, BTUH                      |  |  |  |  |  |
| HR            | Total heat of rejection, BTUH                       |  |  |  |  |  |
| HWC           | Hot water generator (desuperheater) capacity, Mbtuh |  |  |  |  |  |
| KW            | Total power unit input, kilowatts                   |  |  |  |  |  |
| LAT           | Leaving air temperature, °F                         |  |  |  |  |  |
| LC            | Latent cooling capacity, BTUH                       |  |  |  |  |  |
| LOC           | Loss of charge                                      |  |  |  |  |  |
| LWT           | Leaving water temperature, °F                       |  |  |  |  |  |
| MBTUH         | 1,000 BTU per hour                                  |  |  |  |  |  |
| MPT           | Male pipe thread                                    |  |  |  |  |  |
| MWV           | Motorized water valve                               |  |  |  |  |  |
| PSC           | Permanent split capacitor                           |  |  |  |  |  |
| SC            | Sensible cooling capacity, BTUH                     |  |  |  |  |  |
| S/T           | Sensible to total cooling ratio                     |  |  |  |  |  |
| TC            | Total cooling capacity, BTUH                        |  |  |  |  |  |
| TD or delta T | Temperature differential                            |  |  |  |  |  |
| VFD           | Variable frequency drive                            |  |  |  |  |  |
| WB            | Wet bulb temperature, °F                            |  |  |  |  |  |
| WPD           | Waterside pressure drop, psi or feet of head        |  |  |  |  |  |
| WSE           | Waterside economizer                                |  |  |  |  |  |

### Selection Procedure

- **Step 1** Determine the actual heating and cooling loads at the desired dry bulb and wet bulb conditions.
- Step 2 Obtain the following design parameters: Entering water temperature, water flow rate in GPM, airflow in CFM, water flow pressure drop and design wet and dry bulb temperatures. Airflow CFM should be between 300 and 500 CFM per ton. Unit water pressure drop should be kept as close as possible to each other to make water balancing easier. Go to the appropriate tables and find the proper indicated water flow and water temperature.
- **Step 3** Select a unit based on total and sensible cooling conditions. Select a unit which is closest to, but no larger than, the actual cooling load.
- **Step 4** Enter tables at the design water flow and water temperature. Read the total and sensible cooling capacities (Note: interpolation is permissible, extrapolation is not).
- Step 5 Read the heating capacity. If it exceeds the design criteria it is acceptable. It is quite normal for Water-Source Heat Pumps to be selected on cooling capacity only since the heating output is usually greater than the cooling capacity.
- **Step 6** Determine the correction factors associated with the variable factors of dry bulb, wet bulb, and air flow.

Corrected Total Cooling = tabulated total cooling x wet bulb correction x airflow correction.

Corrected Sensible Cooling = tabulated sensible cooling x wet/dry bulb correction, and air flow correction.

- Step 7 Compare the corrected capacities to the load requirements. Normally if the capacities are within 10% of the loads, the equipment is acceptable. It is better to under size than oversize, as undersizing improves humidity control, reduces sound levels and extends the life of the equipment.
- Step 8 When completed, calculate water temperature rise and assess the selection. If the units selected are not within 10% of the load calculations, then review what effect changing the GPM, water temperature and/or air flow and air temperature would have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat the procedure. Remember, when in doubt, under size slightly for best performance.

# **Example Equipment Selection For Cooling Step 1 Load Determination:**

Assume we have determined that the appropriate cooling load at the desired dry bulb 80°F and wet bulb 65°F conditions is as follows

| Total Cooling     | 17,000 BTUH                   |
|-------------------|-------------------------------|
| Sensible Cooling  | 12,000 BTUH                   |
| Entering Air Temp | 80°F Dry Bulb / 65°F Wet Bulb |

#### **Step 2 Design Conditions:**

Similarly, we have also obtained the following design parameters:

| Entering Water Temp        | 90°F                    |
|----------------------------|-------------------------|
| Water Flow (Based upon 10° | F rise in temp.)5.1 GPM |
| Airflow at ESP Unit        | 630 CFM (90% of rated)  |

#### Steps 3, 4 & 5 HP Selection:

After making our preliminary selection (TSL18 with PSC motor), we enter the tables at design water flow and water temperature and read Total Cooling, Sens. Cooling and Heat of Rej. capacities:

| Total Cooling     | 18,350 BTUH |
|-------------------|-------------|
| Sensible Cooling  | 13,210 BTUH |
| Heat of Rejection | 22,470 BTUH |

#### **Steps 6 & 7 Entering Air and Airflow Corrections:**

Next, we determine our correction factors.

## Step 8 Water Temperature Rise Calculation & Assessment:

| Actual Temperature | Rise | 8 | 3°F |
|--------------------|------|---|-----|
|--------------------|------|---|-----|

When we compare the Corrected Total Cooling and Corrected Sensible Cooling figures with our load requirements stated in Step 1, we discover that our selection is within +/- 10% of our sensible load requirement. Furthermore, we see that our Corrected Total Cooling figure is slightly undersized as recommended, when compared to the actual indicated load.

### TSL Series Nomenclature – D Cabinet

| Section           | Position | Digit Value | Description                                          |
|-------------------|----------|-------------|------------------------------------------------------|
| Series            | 1        | D           | Ducted Cabinet Series                                |
| Size              | 2        | 1           | 09 - 0.75 ton                                        |
|                   |          | 2           | 12 - 1 ton                                           |
|                   |          | 3           | 15 - 1.25 ton                                        |
|                   |          | 4           | 18 - 1.5 ton                                         |
|                   |          | 5           | 24 - 2 ton                                           |
|                   |          | 6           | 30 - 2.5 ton                                         |
|                   |          | 7           | 36 - 3 ton                                           |
| Voltage           | 3        | G           | 208-230/60/1                                         |
|                   |          | E           | 265/60/1                                             |
| Options           | 4        | Α           | Premium Seal                                         |
|                   |          | В           | Stainless Steal Drain Pan                            |
|                   |          | С           | Premium Seal & Stainless Steal Drain Pan             |
|                   |          | 0           | None                                                 |
|                   |          | 1           | Premium Seal & 2" Filter                             |
|                   |          | 2           | Stainless Steal Drain Pan & 2" Filter                |
|                   |          | 3           | Premium Seal, Stainless Steal Drain Pan, & 2" Filter |
|                   |          | 4           | 2" Filter                                            |
| Harness Controls  | 5        | Α           | PSC fan motor, ADA mounted                           |
|                   |          | В           | CV ECM fan motor, ADA mounted                        |
|                   |          | С           | PSC fan motor, MPC DDC controls                      |
|                   |          | D           | CV ECM fan motor, MPC DDC controls                   |
|                   |          | N           | PSC fan motor, Remote mounted thermostat             |
|                   |          | R           | CV ECM fan motor, Remote mounted thermostat          |
|                   |          | 1           | CT ECM fan motor, ADA mounted                        |
|                   |          | 2           | CT ECM fan motor, MPC DDC controls                   |
|                   |          | 4           | CT ECM fan motor, Remote mounted thermostat          |
| Power Termination | 6        | Α           | Disconnect switch                                    |
|                   |          | В           | Breaker                                              |
|                   |          | С           | Breaker, Internal circulating pump                   |
|                   |          | D           | Disconnect switch, Internal circulating pump         |
|                   |          | Е           | Internal circulating pump                            |
|                   |          | 0           | None                                                 |
| Cabinet Height    | 7        | Е           | 65"                                                  |
|                   |          | F           | 65" with isolation pad                               |
| Riser Style       | 8        | 0           | Follower/None                                        |
|                   |          | 1           | Standard                                             |
|                   |          | 2           | Leader                                               |

### **Table Continue on Next Page**

### TSL Series Nomenclature - D Cabinet

### **Table Continue from Previous Page**

|                                     |          | Digit |               |                           |                    |               |               |
|-------------------------------------|----------|-------|---------------|---------------------------|--------------------|---------------|---------------|
| Section                             | Position | Value |               |                           | Description        |               |               |
| Riser Location                      | 9        | 0     | None          |                           |                    |               |               |
|                                     |          | 1     | Shipped Sepa  | arately                   |                    |               |               |
|                                     |          | 2     | Left Back     |                           |                    |               |               |
|                                     |          | 3     | Right Back    |                           |                    |               |               |
|                                     |          | 4     | Left Side     |                           |                    |               |               |
|                                     |          |       |               |                           |                    |               |               |
|                                     |          | 5     | Right Side    |                           |                    |               |               |
|                                     |          | 6     | Chassis shipp | ped in cabinet, risers sh | ipped separately   |               |               |
|                                     |          | 7     | Chassis shipp | oed in cabinet, no risers | , no ball valve as | semblies      |               |
| Riser Ball Valve Options            | 10       | 5     | Standard (MN  | NPT) Ball Valves          |                    |               |               |
|                                     |          | N     | None          |                           |                    |               |               |
| Back/Front/Top Supply Air Locations | 11       | E     | Тор           |                           |                    |               |               |
| Side Supply Air Locations           | 12       | 0     | None          |                           |                    |               |               |
| Misc. Cabinet Options               | 13       | -     | Option        | Thermostat Whip           | SA Opening         | SA Dust Cover | RA Dust Cover |
| imise. Submet Options               |          |       | Α             | No Tstat Whip             |                    |               |               |
|                                     |          |       | В             | 15' Tstat Whip            | Factory            | .,            | Yes           |
|                                     |          |       | С             | 25' Tstat Whip            | Configured         | Yes           |               |
|                                     |          |       | D             | 35' Tstat Whip            |                    |               |               |
|                                     |          |       | J             | No Tstat Whip             |                    |               |               |
|                                     |          |       | K             | 15' Tstat Whip            | Factory            | Yes           | None          |
|                                     |          |       | L             | 25' Tstat Whip            | Configured         | 165           | None          |
|                                     |          |       | M             | 35' Tstat Whip            |                    |               |               |
|                                     |          |       | N             | No Tstat Whip             |                    |               |               |
|                                     |          |       | Р             | 15' Tstat Whip            | Factory            | None          | Yes           |
|                                     |          |       | Q             | 25' Tstat Whip            | Configured         | 165           |               |
|                                     |          |       | R             | 35' Tstat Whip            |                    |               |               |
|                                     |          |       | 4             | No Tstat Whip             |                    |               |               |
|                                     |          |       | 5             | 15' Tstat Whip            | Factory            | None          | None          |
|                                     |          |       | 6             | 25' Tstat Whip            | Configured         | None          | None          |
|                                     |          |       | 7             | 35' Tstat Whip            |                    |               |               |
| Туре                                | 14       | 0     | Standard      |                           |                    |               |               |
|                                     |          |       |               |                           |                    |               |               |

D Ducted Cabinet Series

Revision

### TSL Hybrid Series Nomenclature – E Cabinet

| Section           | Position | Digit<br>Value | Description                                          |
|-------------------|----------|----------------|------------------------------------------------------|
| Series            | 1        | Е              | Hybrid Cabinet Series                                |
| Size              | 2        | 1              | 09 - 0.75 ton                                        |
|                   |          | 2              | 12 - 1 ton                                           |
|                   |          | 3              | 15 - 1.25 ton                                        |
|                   |          | 4              | 18 - 1.5 ton                                         |
|                   |          | 5              | 24 - 2 ton                                           |
|                   |          | 6              | 30 - 2.5 ton                                         |
|                   |          | 7              | 36 - 3 ton                                           |
| Voltage           | 3        | G              | 208-230/60/1                                         |
|                   |          | Е              | 265/60/1                                             |
| Options           | 4        | Α              | Premium Seal                                         |
|                   |          | В              | Stainless Steal Drain Pan                            |
|                   |          | С              | Premium Seal & Stainless Steal Drain Pan             |
|                   |          | 0              | None                                                 |
|                   |          | 1              | Premium Seal & 2" Filter                             |
|                   |          | 2              | Stainless Steal Drain Pan & 2" Filter                |
|                   |          | 3              | Premium Seal, Stainless Steal Drain Pan, & 2" Filter |
|                   |          | 4              | 2" Filter                                            |
| Harness Controls  | 5        | В              | CV ECM fan motor, ADA mounted                        |
|                   |          | D              | CV ECM fan motor, MPC DDC controls                   |
|                   |          | R              | CV ECM fan motor, Remote mounted thermostat          |
|                   |          | S              | CV ECM fan motor, Cabinet mounted thermostat         |
|                   |          | 1              | CT ECM fan motor, ADA mounted                        |
|                   |          | 2              | CT ECM fan motor, MPC DDC controls                   |
|                   |          | 4              | CT ECM fan motor, Remote mounted thermostat          |
|                   |          | 5              | CT ECM fan motor, Cabinet mounted thermostat         |
| Power Termination | 6        | Α              | Disconnect switch                                    |
|                   |          | В              | Breaker                                              |
|                   |          | С              | Breaker, Internal circulating pump                   |
|                   |          | D              | Disconnect switch, Internal circulating pump         |
|                   |          | Е              | Internal circulating pump                            |
|                   |          | 0              | None                                                 |
| Cabinet Height    | 7        | Α              | 88"                                                  |
|                   |          | В              | 80"                                                  |
|                   |          | С              | 88" with isolation pad                               |
|                   |          | D              | 80" with isolation pad                               |
|                   |          | Е              | 65"                                                  |
|                   |          | F              | 65" with isolation pad                               |
| Riser Style       | 8        | 0              | Follower/None                                        |
|                   |          | 1              | Standard                                             |
|                   |          | 2              | Leader                                               |

### **Table Continue on Next Page**

### TSL Hybrid Series Nomenclature – E Cabinet

### **Table Continue from Previous Page**

| Section                             | Position | Digit<br>Value | Description                                                     |
|-------------------------------------|----------|----------------|-----------------------------------------------------------------|
| Riser Location                      | 9        | 0              | None                                                            |
|                                     |          | 1              | Shipped Separately                                              |
|                                     |          | 2              | Left Back                                                       |
|                                     |          | 3              | Right Back                                                      |
|                                     |          | 4              | Left Side                                                       |
|                                     |          | 5              | Right Side                                                      |
|                                     |          | 6              | Chassis shipped in cabinet, risers shipped separately           |
|                                     |          | 7              | Chassis shipped in cabinet, no risers, no ball valve assemblies |
| Riser Ball Valve Options            | 10       | 5              | Standard (MNPT) Ball Valves                                     |
|                                     |          | N              | None                                                            |
| Back/Front/Top Supply Air Locations | 11       | 0              | None                                                            |
|                                     |          | Α              | Back Small                                                      |
|                                     |          | В              | Back Large                                                      |
|                                     |          | С              | Front Small                                                     |
|                                     |          | D              | Front Large                                                     |
|                                     |          | Е              | Тор                                                             |
|                                     |          | F              | Back Small & Top                                                |
|                                     |          | G              | Back Large & Top                                                |
|                                     |          | Н              | Front Small & Top                                               |
|                                     |          | J              | Front Large & Top                                               |
|                                     |          | K              | Back Small & Front Small                                        |
|                                     |          | L              | Back Large & Front Large                                        |
|                                     |          | М              | Back Small & Front Large                                        |
|                                     |          | N              | Back Large & Front Small                                        |
|                                     |          | Р              | Back Small, Front Small, & Top                                  |
|                                     |          | Q              | Back Large, Front Large, & Top                                  |
|                                     |          | R              | Back Small, Front Large, & Top                                  |
|                                     |          | S              | Back Large, Front Small, & Top                                  |
| Side Supply Air Locations           | 12       | 0              | None                                                            |
|                                     |          | Α              | Right Small                                                     |
|                                     |          | В              | Right Large                                                     |
|                                     |          | С              | Left Small                                                      |
|                                     |          | D              | Left Large                                                      |
|                                     |          | Ε              | Right Small & Left Small                                        |
|                                     |          | F              | Right Large & Left Large                                        |
|                                     |          | G              | Right Small & Left Large                                        |
|                                     |          | Н              | Right Large & Left Small                                        |

### **Table Continue on Next Page**

### TSL Hybrid Series Nomenclature – E Cabinet

### **Table Continue from Previous Page**

Digit

Revision

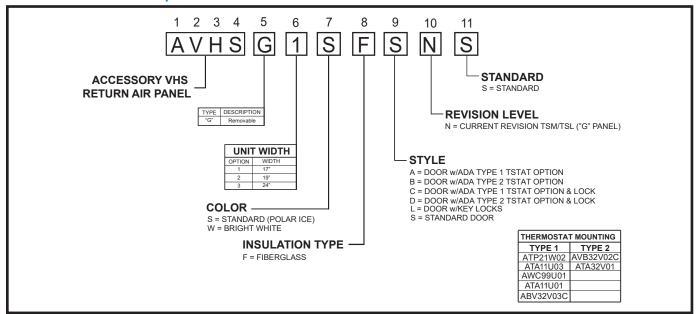
| Section               | Position Valu |          |                 | Description |               |              |
|-----------------------|---------------|----------|-----------------|-------------|---------------|--------------|
| Misc. Cabinet Options | 13            | Option   | Thermostat Whip | SA Opening  | SA Dust Cover | RA Dust Cove |
| •                     |               | Α        | No Tstat Whip   |             |               |              |
|                       |               | В        | 15' Tstat Whip  | Factory     | V             | V            |
|                       |               | С        | 25' Tstat Whip  | Configured  | Yes           | Yes          |
|                       |               | D        | 35' Tstat Whip  |             |               |              |
|                       |               | E        | No Tstat Whip   |             |               |              |
|                       |               | F        | 15' Tstat Whip  | Field       | Nama          | Yes          |
|                       |               | G        | 25' Tstat Whip  | Configured  | None          | res          |
|                       |               | Н        | 35' Tstat Whip  |             |               |              |
|                       |               | J        | No Tstat Whip   |             |               |              |
|                       |               | K        | 15' Tstat Whip  | Factory     | Yes           | None         |
|                       |               | L        |                 |             | res           | None         |
|                       |               | M        | 35' Tstat Whip  |             |               |              |
|                       |               | N        | No Tstat Whip   |             |               |              |
|                       |               | Р        | 15' Tstat Whip  | Factory     | None          | Yes          |
|                       |               | Q        | 25' Tstat Whip  | Configured  | None          | res          |
|                       |               | R        | 35' Tstat Whip  |             |               |              |
|                       |               | 0        | No Tstat Whip   |             |               |              |
|                       |               | 1        | 15' Tstat Whip  | Field       | None          | None         |
|                       |               | 2        | 25' Tstat Whip  | Configured  | None          | None         |
|                       |               | 3        | 35' Tstat Whip  |             |               |              |
|                       |               | 4        | No Tstat Whip   |             |               |              |
|                       |               | 5        | 15' Tstat Whip  | Factory     | None          | None         |
|                       |               | 6        | 25' Tstat Whip  | Configured  | None          | None         |
|                       |               | 7        | 35' Tstat Whip  |             |               |              |
| Туре                  | 14 0          | Standard |                 |             |               |              |
|                       |               |          |                 |             |               |              |

A Hybrid Cabinet Series

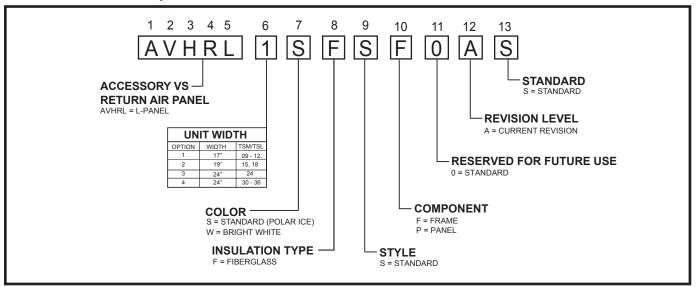
### TSL Series Nomenclature – Chassis

| Section             | Position | Digit<br>Value | <b>Description</b>                                                                           |
|---------------------|----------|----------------|----------------------------------------------------------------------------------------------|
| Series              | 1-3      | TSL            | Vertical Stack Ducted & Hybrid Application                                                   |
| Unit Size           | 4-5      | 09             | 09 - 0.75 ton                                                                                |
|                     |          | 12             | 12 - 1 ton                                                                                   |
|                     |          | 15             | 15 - 1.25 ton                                                                                |
|                     |          | 18             | 18 - 1.5 ton                                                                                 |
|                     |          | 24             | 24 - 2 ton                                                                                   |
|                     |          | 30             | 30 - 2.5 ton                                                                                 |
|                     |          | 36             | 36 - 3 ton                                                                                   |
| Voltage             | 6        | Е              | 265/60/1                                                                                     |
|                     |          | G              | 208-230/60/1                                                                                 |
| Chassis Options     | 7        | Α              | Stainless Steal Drain Pan                                                                    |
|                     |          | В              | UltraQuiet                                                                                   |
|                     |          | С              | Stainless Steal Drain Pan & UltraQuiet                                                       |
|                     |          | D              | Stainless Steal Drain Pan & Connection to communicating thermostat                           |
|                     |          | E              | UltraQuiet & Connection to communicating thermostat                                          |
|                     |          | F              | Stainless Steal Drain Pan, UltraQuiet, & Connection to communicating thermostat              |
|                     |          | G              | Connection to communicating thermostat                                                       |
|                     |          | Н              | Stainless Steal Drain Pan & RIB Relay                                                        |
|                     |          | K              | UltraQuiet & RIB Relay                                                                       |
|                     |          | L              | Stainless Steal Drain Pan, UltraQuiet, & RIB Relay                                           |
|                     |          | М              | RIB Relay                                                                                    |
|                     |          | N              | Stainless Steal Drain Pan, RIB Relay, & Connection to communicating thermostat               |
|                     |          | Р              | UltraQuiet, RIB Relay, & Connection to communicating thermostat                              |
|                     |          | Q              | Stainless Steal Drain Pan, UltraQuiet, , RIB Relay, & Connection to communicating thermostat |
|                     |          | R              | RIB Relay & Connection to communicating thermostat                                           |
|                     |          | S              | None                                                                                         |
| Controls            | 8        | Α              | CXM2                                                                                         |
|                     |          | В              | DXM2.5                                                                                       |
|                     |          | С              | CXM2 w/MPC                                                                                   |
|                     |          | D              | DXM2.5 w/MPC                                                                                 |
| Auto-Flow Regulator | 9        | С              | 1.5 GPM                                                                                      |
|                     |          | D              | 2 GPM                                                                                        |
|                     |          | Е              | 2.5 GPM                                                                                      |
|                     |          | F              | 3 GPM                                                                                        |
|                     |          | G              | 3.5 GPM                                                                                      |
|                     |          | Н              | 4 GPM                                                                                        |
|                     |          | J              | 5 GPM                                                                                        |
|                     |          | K              | 6 GPM                                                                                        |
|                     |          | L              | 7 GPM                                                                                        |
|                     |          |                |                                                                                              |
|                     |          | M              | 8 GPM                                                                                        |
|                     |          | M<br>N         | 8 GPM<br>9 GPM                                                                               |
|                     |          |                | 8 GPM<br>9 GPM<br>10.5 GPM                                                                   |

### **Table Continue on Next Page**

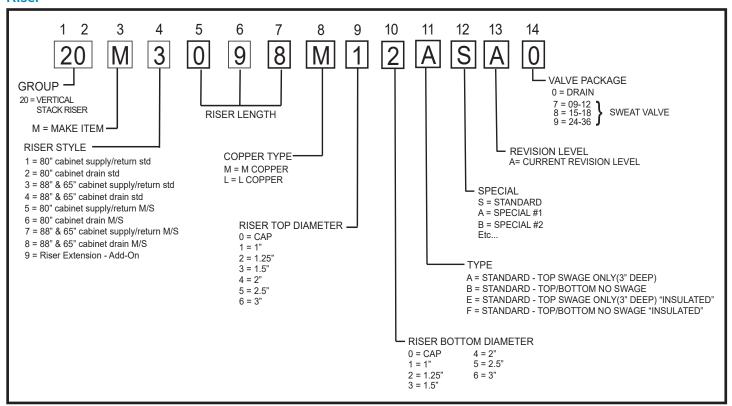

### TSL Series Nomenclature – Chassis

### **Table Continue from Previous Page**

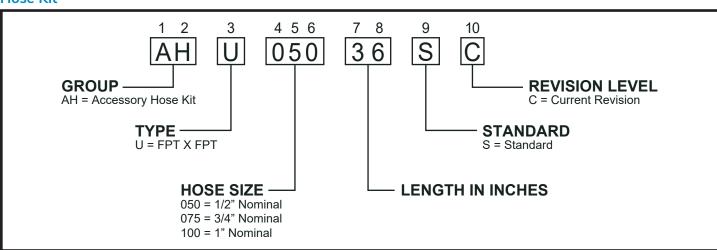

|                        |          | Digit |                                                                      |
|------------------------|----------|-------|----------------------------------------------------------------------|
| Section                | Position | Value | Description                                                          |
| Water Circuit Options  | 10       | S     | None                                                                 |
|                        |          | М     | 2-Way Water Valve - Fail Closed                                      |
|                        |          | N     | 2-Way Water Valve - Fail Opened                                      |
|                        |          | G     | 3-Way Water Valve                                                    |
|                        |          | Т     | Modulating Water Valve                                               |
|                        |          | Р     | Secondary Circulating Pump                                           |
|                        |          | Н     | Hydronic Heating w/2-Way Water Valve - Fail Closed                   |
|                        |          | J     | Hydronic Heating w/2-Way Water Valve - Fail Opened                   |
|                        |          | L     | Hydronic Heating w/3-Way Water Valve                                 |
|                        |          | K     | Hydronic Heating w/ 3-Way Water Valve and Secondary Circulating Pump |
| Heat Exchanger Options | 11       | С     | Tin-Plated Air Coil & Copper Water Coil                              |
|                        |          | N     | Tin-Plated Air Coil & Cupro-Nickel Water Coil                        |
|                        |          | D     | Tin-Plated Air Coil, Copper Water Coil, & Insulated Tubing           |
|                        |          | Ε     | Tin-Plated Air Coil, Cupro-Nickel Coil, & Insulated Tubing           |
|                        |          | F     | Standard Air Coil, Copper Water Coil, & Insulated Tubing             |
|                        |          | G     | Standard Air Coil, Cupro-Nickel Coil, & Insulated Tubing             |
|                        |          | L     | Standard Air Coil & Copper Water Coil                                |
|                        |          | М     | Standard Air Coil, Cupro-Nickel Coil                                 |
| Shipping               | 12       | 6     | Chassis Ships in Cabinet (risers not attached)                       |
|                        |          | S     | Standard                                                             |
| Blower Motor           | 13       | Α     | PSC - Standard Static (TSL Only)                                     |
|                        |          | С     | Constant Torque ECM                                                  |
|                        |          | D     | Constant Volume ECM                                                  |
| Standard               | 14       | S     | Standard                                                             |
| Revision               | 15       | С     | Current Revision                                                     |

### TSL Series Accessory Nomenclature

### Return Air Panel "G" Style

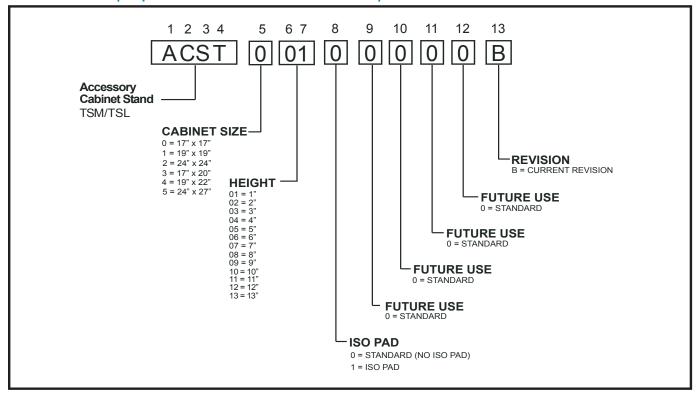



### Return Air Panel "L" Style




### TSL Series Accessory Nomenclature

#### Riser




#### **Hose Kit**



### TSL Series Accessory Nomenclature

### Cabinet Stands (Ship loose in bulk for field attachment)



### Performance Data – AHRI/ASHRAE/ISO 13256-1. English (I-P) Units

### AHRI/ASHRAE/ISO 13256-1. English (I-P) Units

|            | W                 | ater Loop H   | Heat Pump        |      | Ground Loop Heat Pump |               |                  |     |  |  |
|------------|-------------------|---------------|------------------|------|-----------------------|---------------|------------------|-----|--|--|
| Model with | Cooling           | g 86°F        | Heating          | 68°F | Coolin                | g 77°F        | Heating 32°F     |     |  |  |
| ECM Motor  | Capacity<br>Btuh  | EER<br>Btuh/W | Capacity<br>Btuh | СОР  | Capacity<br>Btuh      | EER<br>Btuh/W | Capacity<br>Btuh | СОР |  |  |
| TSL09      | 9300              | 14.8          | 12500            | 5.6  | 10,100                | 16.8          | 7,200            | 3.4 |  |  |
| TSL12      | <b>SL12</b> 12000 |               | 15500            | 5.3  | 12,600                | 17.2          | 9,200            | 3.4 |  |  |
| TSL15      | 14600             | 16.3          | 18900            | 5.4  | 15,400                | 19.2          | 11,000           | 3.7 |  |  |
| TSL18      | 17100             | 15.1          | 22300            | 5.4  | 18,400                | 17.8          | 13,000           | 3.5 |  |  |
| TSL24      | 25000             | 16.4          | 30500            | 5.3  | 26,500                | 19.4          | 18,500           | 3.6 |  |  |
| TSL30      | 28500             | 16.1          | 33500            | 5.3  | 29,500 18.4           |               | 21,000           | 3.7 |  |  |
| TSL36      | 35000             | 15.0          | 40500            | 5.0  | 36,000                | 36,000 16.7   |                  | 3.5 |  |  |

|            | W                | ater Loop I   | Heat Pump        |      | Ground Loop Heat Pump |               |                  |      |  |  |
|------------|------------------|---------------|------------------|------|-----------------------|---------------|------------------|------|--|--|
| Model with | Cooling          | g 86°F        | Heating          | 68°F | Cooling               | g 77°F        | Heating          | 32°F |  |  |
| PSC Motor  | Capacity<br>Btuh | EER<br>Btuh/W | Capacity<br>Btuh | СОР  | Capacity<br>Btuh      | EER<br>Btuh/W | Capacity<br>Btuh | СОР  |  |  |
| TSL09      | 9300 13.5        |               | 12500 5.2        |      | 10100                 | 15.4          | 7200             | 3.2  |  |  |
| TSL12      | 12000            | 14.2          | 15500            | 5.2  | 12600                 | 15.9          | 9200             | 3.2  |  |  |
| TSL15      | 14000            | 14.3          | 19000            | 5.0  | 15400                 | 17.7          | 11500            | 3.6  |  |  |
| TSL18      | 16800            | 13.2          | 22800            | 5.0  | 18600                 | 16.9          | 13100            | 3.4  |  |  |
| TSL24      | 24500            | 15.2          | 31500            | 5.0  | 26000                 | 17.9          | 18500            | 3.4  |  |  |
| TSL30      | 28000 15.2       |               | 34000 5.2        |      | 29500 18.0            |               | 21000            | 3.4  |  |  |
| TSL36      | 35000            | 14.3          | 40500            | 5.0  | 36000 16.6            |               | 25500            | 3.5  |  |  |

### TSL Hybrid Series - English

| Model             | Hydr | Hydronic Heating Entering Air 70° |      |                  |  |  |  |  |  |  |  |
|-------------------|------|-----------------------------------|------|------------------|--|--|--|--|--|--|--|
| with ECM<br>Motor | CFM  | EWT (°F)                          | GPM  | Capacity<br>Btuh |  |  |  |  |  |  |  |
| TSL09             | 400  | 105                               | 2.25 | 10200            |  |  |  |  |  |  |  |
| TSL12             | 500  | 105                               | 3.00 | 12400            |  |  |  |  |  |  |  |
| TSL15             | 700  | 105                               | 3.75 | 17000            |  |  |  |  |  |  |  |
| TSL18             | 800  | 105                               | 4.50 | 19300            |  |  |  |  |  |  |  |
| TSL24             | 950  | 105                               | 6.00 | 25700            |  |  |  |  |  |  |  |
| TSL30             | 1150 | 105                               | 7.50 | 31100            |  |  |  |  |  |  |  |
| TSL36             | 1350 | 105                               | 9.00 | 36000            |  |  |  |  |  |  |  |

### Performance Data – AHRI/ASHRAE/ISO 13256-1. Metric (S-I) Units

### AHRI/ASHRAE/ISO 13256-1. Metric (S-I) Units

| Model    | W              | /ater Loop | Heat Pump    |      | Ground Loop Heat Pump |            |                |     |  |  |
|----------|----------------|------------|--------------|------|-----------------------|------------|----------------|-----|--|--|
| with ECM | Cooling        | g 30°C     | Heating      | 20°C | Cooling               | 25°C       | Heating        | 0°C |  |  |
| Motor    | Capacity<br>kW | EER<br>W/W | Capacity COP |      | Capacity<br>kW        | EER<br>W/W | Capacity<br>kW | СОР |  |  |
| TSL09    | 2.73           | 4.3        | 3.67         | 5.6  | 2.96                  | 4.9        | 2.11           | 3.4 |  |  |
| TSL12    | 3.52           | 4.5        | 4.55         | 5.3  | 3.70                  | 5.0        | 2.70           | 3.4 |  |  |
| TSL15    | 4.28           | 4.8        | 5.54         | 5.4  | 4.52                  | 5.6        | 3.23           | 3.7 |  |  |
| TSL18    | 5.01           | 4.4        | 6.54         | 5.4  | 5.40                  | 5.2        | 3.81           | 3.5 |  |  |
| TSL24    | 7.33           | 4.8        | 8.94         | 5.3  | 7.77                  | 5.7        | 5.43           | 3.6 |  |  |
| TSL30    | 8.36 4.7       |            | 9.82 5.3     |      | 8.65                  | 5.4        | 6.16           | 3.7 |  |  |
| TSL36    | 10.26          | 4.4        | 11.88        | 5.0  | 10.56                 | 4.9        | 7.48           | 3.5 |  |  |

| Model             | v              | /ater Loop | Heat Pump      |      | Ground Loop Heat Pump |            |                |     |  |  |
|-------------------|----------------|------------|----------------|------|-----------------------|------------|----------------|-----|--|--|
| Model<br>with PSC | Cooling        | g 30°C     | Heating        | 20°C | Cooling               | 25°C       | Heating        | 0°C |  |  |
| Motor             | Capacity<br>kW | EER<br>W/W | Capacity<br>kW | СОР  | Capacity<br>kW        | EER<br>W/W | Capacity<br>kW | СОР |  |  |
| TSL09             | 2.73           | 4.0        | 3.67           | 5.2  | 2.96                  | 4.5        | 2.11           | 3.2 |  |  |
| TSL12             | 3.52 4.2       |            | 4.55           | 5.2  | 3.70                  | 4.7        | 2.70           | 3.2 |  |  |
| TSL15             | 4.11           | 4.2        | 5.57           | 5.0  | 4.52                  | 5.2        | 3.37           | 3.6 |  |  |
| TSL18             | 4.93           | 3.9        | 6.69           | 5.0  | 5.45                  | 5.0        | 3.84           | 3.4 |  |  |
| TSL24             | 7.18           | 4.5        | 9.24           | 5.0  | 7.62                  | 5.2        | 5.43           | 3.4 |  |  |
| TSL30             | 8.21 4.5       |            | 9.97           | 5.2  | 8.65                  | 5.3        | 6.16           | 3.4 |  |  |
| TSL36             | 10.26          | 4.2        | 11.88          | 5.0  | 10.56                 | 4.9        | 7.48           | 3.5 |  |  |

Cooling capacities based upon 27°C DB, 19°C WB entering air temperature Heating capacities based upon 20°C DB, 15°C WB entering air temperature All units AHRI/ISO/ASHRAE 13256-1 rated on high speed motor TAP All ratings based upon operation at lower voltage of dual voltage rated models

#### **TSL Hybrid Series – Metric**

| _                 |                                      |          |       |                |  |  |  |  |  |
|-------------------|--------------------------------------|----------|-------|----------------|--|--|--|--|--|
| Model             | Hydronic Heating Entering Air 21.1°C |          |       |                |  |  |  |  |  |
| with ECM<br>Motor | CFM                                  | EWT (°C) | I/m   | Capacity<br>kW |  |  |  |  |  |
| TSL09             | 400                                  | 40.6     | 8.52  | 3.0            |  |  |  |  |  |
| TSL12             | 500                                  | 40.6     | 11.36 | 3.6            |  |  |  |  |  |
| TSL15             | 700                                  | 40.6     | 14.19 | 5.0            |  |  |  |  |  |
| TSL18             | 800                                  | 40.6     | 17.03 | 5.7            |  |  |  |  |  |
| TSL24             | 950                                  | 40.6     | 22.71 | 7.5            |  |  |  |  |  |
| TSL30             | 1150                                 | 40.6     | 28.39 | 9.1            |  |  |  |  |  |
| TSL36             | 1350                                 | 40.6     | 34.07 | 10.6           |  |  |  |  |  |

### Performance Data - Selection Notes

For operation in the shaded area to determine if water can be used in lieu of an antifreeze solution, the Leaving Water Temperature (LWT) must be calculated. Flow must be maintained to a level such that the LWT is maintained above 42°F [5.6°C] when the CXM2/DXM2.5 JW3 jumper is not clipped (see example below). Otherwise, appropriate levels (10° below LWT, See IOM) of a proper antifreeze should be used in systems with leaving water temperatures of 42°F [5.6°C] or below and the JW3 jumper should be clipped. This is due to the potential of the refrigerant temperature being as low as 32°F [0°C], which may lead to a nuisance cutout due to the activation of the Low Temperature Protection (LT1). JW3 should **never** be clipped for standard range equipment or systems without antifreeze.

#### **Example:**

At 50°F EWT (Entering Water Temperature) and 1.5 gpm/ton, a 3 ton unit has a HE of 26,830 Btuh. To calculate LWT, rearrange the formula for HE as follows:

 $HE = TD \times GPM \times 500$ , where HE = Heat of Extraction (Btuh); TD = temperature difference (EWT - LWT) and GPM = U.S. Gallons per Minute.

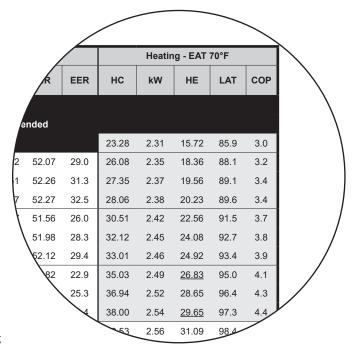
 $TD = HE / (GPM \times 500)$ 

 $TD = 26,830 / (4.5 \times 500)$ 

TD = 12°F

LWT = EWT - TD

LWT = 50 - 12 = 38°F - Requires appropriate antifreeze (Protect to 28°F), JW3 must be clipped, and extended range insulation option.


In this example, a higher flow rate will be required for EWTs of 50°F without antifreeze. At 3 gpm/ton, the calculation becomes:

(Note higher flow increases HE)

TD = 29,650 / (9GPMx500)

TD = 7°F

LWT = 50 - 7 = 43°F - Water is acceptable, do not clip JW3.



### Performance Data - TSL09 with PSC Motor

#### 400 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

| EWT |      | WF  | D*   |      | С    | ooling - EA       | T 80/67° | °F   |      | nance ca | Heati | ng - EA1 | 70°F  |     |
|-----|------|-----|------|------|------|-------------------|----------|------|------|----------|-------|----------|-------|-----|
| °F  | GPM  | PSI | FT   | тс   | sc   | Sens/Tot<br>Ratio | kW       | HR   | EER  | нс       | kW    | HE       | LAT   | СОР |
|     | 1.13 | 1.6 | 3.6  |      |      |                   |          |      |      |          |       |          |       |     |
| 20  | 1.69 | 3.0 | 6.9  |      | Oper | ation not re      | ecomme   | nded |      |          |       |          |       |     |
|     | 2.25 | 4.9 | 11.3 |      |      |                   |          |      |      | 5.7      | 0.64  | 3.5      | 83.1  | 2.6 |
|     | 1.13 | 1.2 | 2.8  | 12.2 | 9.0  | 0.74              | 0.53     | 14.1 | 23.2 | 6.4      | 0.65  | 4.2      | 84.9  | 2.9 |
| 30  | 1.69 | 2.7 | 6.2  | 12.2 | 8.8  | 0.72              | 0.50     | 13.9 | 24.4 | 6.8      | 0.65  | 4.5      | 85.6  | 3.0 |
|     | 2.25 | 4.5 | 10.3 | 12.0 | 8.5  | 0.71              | 0.49     | 13.7 | 24.7 | 6.9      | 0.65  | 4.7      | 86.0  | 3.1 |
|     | 1.13 | 1.0 | 2.4  | 12.0 | 9.1  | 0.75              | 0.57     | 14.0 | 21.0 | 7.6      | 0.66  | 5.4      | 87.6  | 3.4 |
| 40  | 1.69 | 1.9 | 4.5  | 12.2 | 9.0  | 0.74              | 0.54     | 14.1 | 22.8 | 8.0      | 0.66  | 5.8      | 88.5  | 3.5 |
|     | 2.25 | 3.1 | 7.3  | 12.3 | 9.0  | 0.73              | 0.52     | 14.0 | 23.6 | 8.3      | 0.67  | 6.0      | 89.1  | 3.6 |
|     | 1.13 | 1.0 | 2.2  | 11.6 | 8.9  | 0.77              | 0.63     | 13.7 | 18.5 | 8.8      | 0.67  | 6.5      | 90.4  | 3.9 |
| 50  | 1.69 | 1.9 | 4.3  | 12.0 | 9.0  | 0.75              | 0.58     | 14.0 | 20.6 | 9.3      | 0.68  | 7.0      | 91.6  | 4.1 |
|     | 2.25 | 3.1 | 7.1  | 12.1 | 9.1  | 0.75              | 0.56     | 14.0 | 21.6 | 9.6      | 0.68  | 7.3      | 92.3  | 4.2 |
|     | 1.13 | 0.9 | 2.1  | 11.0 | 8.6  | 0.78              | 0.68     | 13.3 | 16.0 | 10.1     | 0.68  | 7.7      | 93.2  | 4.3 |
| 60  | 1.69 | 1.8 | 4.2  | 11.5 | 8.8  | 0.77              | 0.64     | 13.6 | 18.0 | 10.7     | 0.69  | 8.4      | 94.7  | 4.6 |
|     | 2.25 | 3.0 | 6.9  | 11.7 | 8.9  | 0.76              | 0.61     | 13.8 | 19.1 | 11.1     | 0.69  | 8.7      | 95.6  | 4.7 |
|     | 1.13 | 0.8 | 1.9  | 10.2 | 8.1  | 0.80              | 0.75     | 12.8 | 13.7 | 11.3     | 0.69  | 9.0      | 96.2  | 4.8 |
| 70  | 1.69 | 1.8 | 4.1  | 10.8 | 8.5  | 0.78              | 0.70     | 13.2 | 15.5 | 12.1     | 0.70  | 9.7      | 97.9  | 5.1 |
|     | 2.25 | 2.9 | 6.7  | 11.1 | 8.6  | 0.78              | 0.67     | 13.4 | 16.5 | 12.5     | 0.70  | 10.1     | 98.9  | 5.2 |
|     | 1.13 | 0.8 | 1.8  | 9.4  | 7.7  | 0.82              | 0.81     | 12.2 | 11.6 | 12.6     | 0.70  | 10.2     | 99.1  | 5.3 |
| 80  | 1.69 | 1.7 | 3.9  | 10.0 | 8.0  | 0.80              | 0.76     | 12.6 | 13.1 | 13.5     | 0.71  | 11.1     | 101.1 | 5.6 |
|     | 2.25 | 2.8 | 6.5  | 10.3 | 8.2  | 0.79              | 0.74     | 12.8 | 14.0 | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     | 1.13 | 0.7 | 1.7  | 8.6  | 7.2  | 0.84              | 0.88     | 11.6 | 9.7  | 13.9     | 0.71  | 11.5     | 102.1 | 5.8 |
| 90  | 1.69 | 1.6 | 3.8  | 9.2  | 7.5  | 0.82              | 0.83     | 12.0 | 11.0 | 14.8     | 0.71  | 12.4     | 104.3 | 6.1 |
|     | 2.25 | 2.8 | 6.4  | 9.5  | 7.7  | 0.81              | 0.81     | 12.2 | 11.8 | 15.4     | 0.72  | 12.9     | 105.5 | 6.3 |
|     | 1.13 | 0.7 | 1.7  | 7.7  | 6.7  | 0.87              | 0.95     | 11.0 | 8.1  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
| 100 | 1.69 | 1.6 | 3.7  | 8.3  | 7.0  | 0.85              | 0.90     | 11.4 | 9.2  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     | 2.25 | 2.7 | 6.2  | 8.6  | 7.2  | 0.84              | 0.88     | 11.6 | 9.8  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     | 1.13 | 0.7 | 1.6  | 6.9  | 6.3  | 0.91              | 1.02     | 10.4 | 6.8  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
| 110 | 1.69 | 1.6 | 3.6  | 7.4  | 6.6  | 0.88              | 0.98     | 10.8 | 7.6  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     | 2.25 | 2.6 | 6.1  | 7.7  | 6.7  | 0.87              | 0.95     | 11.0 | 8.1  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     | 1.13 | 0.7 | 1.6  | 6.2  | 6.0  | 0.96              | 1.10     | 10.0 | 5.7  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
| 120 | 1.69 | 1.5 | 3.5  | 6.6  | 6.2  | 0.93              | 1.05     | 10.2 | 6.3  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     | 2.25 | 2.6 | 5.9  | 6.9  | 6.3  | 0.91              | 1.03     | 10.4 | 6.7  | 14.0     | 0.71  | 11.5     | 102.2 | 5.8 |
|     |      |     |      | 1    |      | •                 |          |      |      |          |       |          |       |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL12 with PSC Motor

#### 450 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

| EWT           |             | W        | PD*         |           | С    | ooling - EA       | T 80/67° | °F   |      |      | Heati | ng - EAT | 70°F  |     |
|---------------|-------------|----------|-------------|-----------|------|-------------------|----------|------|------|------|-------|----------|-------|-----|
| °F            | GPM         | PSI      | FT          | тс        | sc   | Sens/Tot<br>Ratio | kW       | HR   | EER  | нс   | kW    | HE       | LAT   | СОР |
|               | 1.50        | 2.3      | 5.3         |           |      |                   |          |      |      |      |       |          |       |     |
| 20            | 2.25        | 4.7      | 10.8        |           | Oper | ation not re      | ecomme   | nded |      |      |       |          |       |     |
|               | 3.00        | 7.8      | 18.0        |           |      |                   |          |      |      | 7.6  | 0.87  | 4.7      | 85.7  | 2.6 |
|               | 1.50        | 2.1      | 4.7         | 14.5      | 9.7  | 0.67              | 0.63     | 16.6 | 23.0 | 8.8  | 0.89  | 5.8      | 88.1  | 2.9 |
| 30            | 2.25        | 4.3      | 9.9         | 14.3      | 9.3  | 0.65              | 0.60     | 16.3 | 23.6 | 9.3  | 0.89  | 6.3      | 89.1  | 3.0 |
|               | 3.00        | 7.0      | 16.2        | 14.0      | 9.0  | 0.64              | 0.60     | 16.1 | 23.6 | 9.6  | 0.90  | 6.5      | 89.6  | 3.1 |
|               | 1.50        | 1.5      | 3.6         | 14.4      | 10.0 | 0.69              | 0.68     | 16.7 | 21.2 | 10.5 | 0.91  | 7.4      | 91.6  | 3.4 |
| 40            | 2.25        | 3.1      | 7.3         | 14.5      | 9.8  | 0.67              | 0.64     | 16.7 | 22.6 | 11.1 | 0.92  | 8.0      | 92.8  | 3.5 |
|               | 3.00        | 5.2      | 12.1        | 14.5      | 9.6  | 0.67              | 0.62     | 16.6 | 23.2 | 11.4 | 0.92  | 8.3      | 93.4  | 3.6 |
|               | 1.50        | 1.5      | 3.5         | 14.0      | 9.9  | 0.71              | 0.74     | 16.6 | 18.9 | 12.1 | 0.93  | 9.0      | 94.9  | 3.8 |
| 50            | 2.25        | 3.1      | 7.1         | 14.4      | 10.0 | 0.69              | 0.69     | 16.7 | 20.7 | 12.8 | 0.94  | 9.6      | 98.4  | 4.0 |
|               | 3.00        | 5.1      | 11.8        | 14.5      | 9.9  | 0.69              | 0.67     | 16.8 | 21.5 | 13.2 | 0.94  | 10.0     | 97.2  | 4.1 |
|               | 1.50        | 1.5      | 3.4         | 13.4      | 9.7  | 0.73              | 0.82     | 16.2 | 16.4 | 13.8 | 0.95  | 10.5     | 98.3  | 4.2 |
| 60            | 2.25        | 3.0      | 6.9         | 13.9      | 9.9  | 0.71              | 0.76     | 16.5 | 18.3 | 14.6 | 0.96  | 11.3     | 100.0 | 4.4 |
|               | 3.00        | 5.0      | 11.4        | 14.1      | 10.0 | 0.71              | 0.73     | 16.6 | 19.2 | 15.1 | 0.97  | 11.8     | 100.9 | 4.6 |
|               | 1.50        | 1.4      | 3.3         | 12.6      | 9.4  | 0.75              | 0.89     | 15.6 | 14.1 | 15.4 | 0.97  | 12.1     | 101.6 | 4.6 |
| 70            | 2.25        | 2.9      | 6.7         | 13.2      | 9.7  | 0.73              | 0.84     | 16.0 | 15.8 | 16.4 | 0.98  | 13.0     | 103.6 | 4.9 |
|               | 3.00        | 4.8      | 11.1        | 13.5      | 9.8  | 0.73              | 0.81     | 16.2 | 16.7 | 16.9 | 0.99  | 13.5     | 104.7 | 5.0 |
|               | 1.50        | 1.4      | 3.2         | 11.7      | 9.0  | 0.77              | 0.98     | 15.0 | 11.9 | 17.1 | 0.99  | 13.7     | 105.0 | 5.0 |
| 80            | 2.25        | 2.8      | 6.5         | 12.3      | 9.3  | 0.75              | 0.92     | 15.5 | 13.4 | 18.2 | 1.01  | 14.8     | 107.4 | 5.3 |
|               | 3.00        | 4.7      | 10.8        | 12.6      | 9.4  | 0.75              | 0.89     | 15.7 | 14.2 | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
|               | 1.50        | 1.3      | 3.1         | 10.7      | 8.4  | 0.79              | 1.06     | 14.3 | 10.0 | 18.8 | 1.01  | 15.3     | 108.6 | 5.4 |
| 90            | 2.25        | 2.8      | 6.4         | 11.3      | 8.8  | 0.77              | 1.01     | 14.8 | 11.3 | 20.1 | 1.03  | 16.6     | 111.3 | 5.7 |
|               | 3.00        | 4.6      | 10.5        | 11.7      | 9.0  | 0.77              | 0.98     | 15.0 | 12.0 | 20.9 | 1.04  | 17.3     | 112.9 | 5.9 |
|               | 1.50        | 1.3      | 3.0         | 9.7       | 7.9  | 0.82              | 1.15     | 13.6 | 8.4  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
| 100           | 2.25        | 2.7      | 6.2         | 10.3      | 8.3  | 0.80              | 1.10     | 14.1 | 9.4  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
|               | 3.00        | 4.5      | 10.3        | 10.7      | 8.4  | 0.79              | 1.07     | 14.3 | 10.0 | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
|               | 1.50        | 1.3      | 2.9         | 8.7       | 7.4  | 0.85              | 1.24     | 12.9 | 7.0  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
| 110           | 2.25        | 2.6      | 6.1         | 9.3       | 7.7  | 0.83              | 1.19     | 13.3 | 7.8  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
|               | 3.00        | 4.4      | 10.1        | 9.6       | 7.9  | 0.82              | 1.16     | 13.6 | 8.3  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
|               | 1.50        | 1.2      | 2.8         | 7.8       | 6.9  | 0.88              | 1.33     | 12.3 | 5.9  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
| 120           | 2.25        | 2.6      | 5.9         | 8.3       | 7.2  | 0.86              | 1.28     | 12.7 | 6.5  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
|               | 3.00        | 4.3      | 10.0        | 8.6       | 7.3  | 0.85              | 1.25     | 12.9 | 6.8  | 18.8 | 1.01  | 15.4     | 108.7 | 5.5 |
| Interpolation | on ic normi | scible o | vtrapolatio | on ic not |      |                   |          |      |      |      |       |          |       |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL15 with PSC Motor

#### 600 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| EWT          |            | W         | PD*         |                           | С    | ooling - EA       | T 80/67° | F    |      |      | Heat | ing - EA | Г 70°F |     |
|--------------|------------|-----------|-------------|---------------------------|------|-------------------|----------|------|------|------|------|----------|--------|-----|
| °F           | GPM        | PSI       | FT          | тс                        | sc   | Sens/Tot<br>Ratio | kW       | HR   | EER  | нс   | kW   | HE       | LAT    | СОР |
|              | 1.88       | 0.8       | 1.8         |                           |      |                   |          |      |      |      |      |          |        |     |
| 20           | 2.81       | 1.6       | 3.8         | Operation not recommended |      |                   |          |      |      |      |      |          |        |     |
|              | 3.75       | 2.7       | 6.3         |                           |      |                   |          |      |      | 9.1  | 0.99 | 5.7      | 84.0   | 2.7 |
|              | 1.88       | 0.6       | 1.5         | 18.9                      | 13.9 | 0.73              | 0.65     | 21.1 | 28.8 | 10.4 | 1.02 | 7.0      | 86.1   | 3.0 |
| 30           | 2.81       | 1.4       | 3.2         | 18.5                      | 12.9 | 0.70              | 0.62     | 20.6 | 29.9 | 11.0 | 1.02 | 7.5      | 86.9   | 3.1 |
|              | 3.75       | 2.3       | 5.4         | 18.1                      | 12.2 | 0.68              | 0.61     | 20.1 | 29.8 | 11.3 | 1.03 | 7.8      | 87.4   | 3.2 |
|              | 1.88       | 0.4       | 1.0         | 18.8                      | 14.4 | 0.77              | 0.72     | 21.2 | 26.0 | 12.5 | 1.05 | 8.9      | 89.2   | 3.5 |
| 40           | 2.81       | 0.9       | 2.1         | 18.9                      | 14.0 | 0.74              | 0.67     | 21.2 | 28.3 | 13.2 | 1.05 | 9.6      | 90.3   | 3.7 |
|              | 3.75       | 1.5       | 3.5         | 18.8                      | 13.7 | 0.73              | 0.65     | 21.0 | 29.1 | 13.6 | 1.06 | 10.0     | 90.9   | 3.8 |
|              | 1.88       | 0.4       | 0.9         | 18.2                      | 14.2 | 0.78              | 0.81     | 20.9 | 22.5 | 14.5 | 1.07 | 10.9     | 92.4   | 4.0 |
| 50           | 2.81       | 0.9       | 2.0         | 18.7                      | 14.4 | 0.77              | 0.74     | 21.2 | 25.2 | 15.5 | 1.08 | 11.8     | 93.8   | 4.2 |
|              | 3.75       | 1.4       | 3.3         | 18.8                      | 14.3 | 0.76              | 0.71     | 21.2 | 26.5 | 16.0 | 1.09 | 12.3     | 94.6   | 4.3 |
|              | 1.88       | 0.4       | 0.9         | 17.2                      | 13.7 | 0.80              | 0.90     | 20.3 | 19.0 | 16.7 | 1.09 | 13.0     | 95.7   | 4.5 |
| 60           | 2.81       | 0.8       | 1.9         | 17.9                      | 14.1 | 0.79              | 0.83     | 20.8 | 21.6 | 17.8 | 1.10 | 14.0     | 97.4   | 4.7 |
|              | 3.75       | 1.4       | 3.2         | 18.3                      | 14.3 | 0.78              | 0.80     | 21.0 | 23.0 | 18.4 | 1.11 | 14.6     | 98.3   | 4.9 |
|              | 1.88       | 0.4       | 8.0         | 16.0                      | 12.9 | 0.81              | 1.01     | 19.5 | 15.9 | 18.9 | 1.11 | 15.1     | 99.0   | 5.0 |
| 70           | 2.81       | 0.8       | 1.8         | 16.9                      | 13.5 | 0.80              | 0.93     | 20.1 | 18.1 | 20.1 | 1.12 | 16.3     | 101.0  | 5.3 |
|              | 3.75       | 1.3       | 3.0         | 17.3                      | 13.8 | 0.79              | 0.89     | 20.4 | 19.4 | 20.8 | 1.13 | 17.0     | 102.1  | 5.4 |
|              | 1.88       | 0.3       | 8.0         | 14.7                      | 12.1 | 0.82              | 1.12     | 18.6 | 13.1 | 21.0 | 1.13 | 17.1     | 102.3  | 5.5 |
| 80           | 2.81       | 0.7       | 1.7         | 15.6                      | 12.7 | 0.81              | 1.04     | 19.2 | 15.0 | 22.4 | 1.14 | 18.5     | 104.5  | 5.8 |
|              | 3.75       | 1.3       | 2.9         | 16.1                      | 13.0 | 0.81              | 1.00     | 19.5 | 16.0 | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
|              | 1.88       | 0.3       | 8.0         | 13.4                      | 11.2 | 0.84              | 1.24     | 17.7 | 10.8 | 23.1 | 1.14 | 19.2     | 105.5  | 5.9 |
| 90           | 2.81       | 0.7       | 1.7         | 14.3                      | 11.8 | 0.82              | 1.16     | 18.3 | 12.3 | 24.6 | 1.15 | 20.7     | 107.9  | 6.3 |
|              | 3.75       | 1.2       | 2.8         | 14.8                      | 12.1 | 0.82              | 1.12     | 18.6 | 13.1 | 25.4 | 1.16 | 21.5     | 109.1  | 6.4 |
|              | 1.88       | 0.3       | 0.7         | 12.2                      | 10.5 | 0.87              | 1.37     | 16.8 | 8.9  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
| 100          | 2.81       | 0.7       | 1.6         | 12.9                      | 11.0 | 0.85              | 1.29     | 17.3 | 10.0 | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
|              | 3.75       | 1.2       | 2.7         | 13.4                      | 11.2 | 0.84              | 1.25     | 17.6 | 10.7 | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
|              | 1.88       | 0.3       | 0.7         | 11.0                      | 10.0 | 0.91              | 1.49     | 16.1 | 7.4  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
| 110          | 2.81       | 0.7       | 1.5         | 11.7                      | 10.3 | 0.88              | 1.42     | 16.5 | 8.2  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
|              | 3.75       | 1.1       | 2.6         | 12.0                      | 10.5 | 0.87              | 1.38     | 16.7 | 8.7  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
|              | 1.88       | 0.3       | 0.7         | 10.2                      | 9.9  | 0.97              | 1.62     | 15.7 | 6.3  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
| 120          | 2.81       | 0.6       | 1.5         | 10.6                      | 9.9  | 0.93              | 1.55     | 15.9 | 6.9  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
|              | 3.75       | 1.1       | 2.5         | 10.9                      | 10.0 | 0.92              | 1.51     | 16.0 | 7.2  | 23.2 | 1.14 | 19.3     | 105.7  | 5.9 |
| nterpolation | on ic norm | iccible ( | ovtranolati | on is not                 |      |                   |          |      |      |      |      |          |        |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL18 with PSC Motor

### 700 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| EWT           |           | WPD*       |           | Cooling - EAT 80/67°F |        |                   |      |      |      |      | Heating - EAT 70°F |      |       |     |  |  |
|---------------|-----------|------------|-----------|-----------------------|--------|-------------------|------|------|------|------|--------------------|------|-------|-----|--|--|
| °F            | GPM       | PSI        | FT        | тс                    | sc     | Sens/Tot<br>Ratio | kW   | HR   | EER  | нс   | kW                 | HE   | LAT   | СОР |  |  |
|               | 2.25      | 0.8        | 1.8       |                       |        |                   |      |      |      |      |                    |      |       |     |  |  |
| 20            | 3.38      | 1.9        | 4.4       |                       | Operat | ion not rec       | omme | nded |      |      |                    |      |       |     |  |  |
|               | 4.50      | 3.3        | 7.7       |                       |        |                   |      |      |      | 10.2 | 1.16               | 6.2  | 83.4  | 2.6 |  |  |
|               | 2.25      | 0.6        | 1.4       | 20.4                  | 14.1   | 0.69              | 0.82 | 23.2 | 25.1 | 12.1 | 1.19               | 8.0  | 85.9  | 3.0 |  |  |
| 30            | 3.38      | 1.6        | 3.7       | 20.2                  | 13.6   | 0.67              | 0.77 | 22.9 | 26.4 | 12.8 | 1.20               | 8.7  | 86.8  | 3.1 |  |  |
|               | 4.50      | 2.8        | 6.6       | 20.0                  | 13.2   | 0.66              | 0.75 | 22.6 | 26.8 | 13.1 | 1.21               | 9.0  | 87.3  | 3.2 |  |  |
|               | 2.25      | 0.5        | 1.1       | 20.2                  | 14.3   | 0.71              | 0.90 | 23.2 | 22.5 | 14.6 | 1.23               | 10.4 | 89.3  | 3.5 |  |  |
| 40            | 3.38      | 1.2        | 2.7       | 20.4                  | 14.2   | 0.70              | 0.84 | 23.3 | 24.4 | 15.4 | 1.24               | 11.2 | 90.3  | 3.6 |  |  |
|               | 4.50      | 2.0        | 4.7       | 20.4                  | 14.1   | 0.69              | 0.81 | 23.2 | 25.2 | 15.9 | 1.25               | 11.6 | 90.9  | 3.7 |  |  |
|               | 2.25      | 0.4        | 1.0       | 19.5                  | 14.1   | 0.73              | 0.99 | 22.8 | 19.6 | 17.0 | 1.26               | 12.7 | 92.4  | 3.9 |  |  |
| 50            | 3.38      | 1.1        | 2.6       | 20.0                  | 14.3   | 0.71              | 0.92 | 23.2 | 21.7 | 17.9 | 1.27               | 13.6 | 93.6  | 4.1 |  |  |
|               | 4.50      | 2.0        | 4.5       | 20.2                  | 14.3   | 0.71              | 0.89 | 23.3 | 22.7 | 18.4 | 1.28               | 14.0 | 94.3  | 4.2 |  |  |
|               | 2.25      | 0.4        | 1.0       | 18.4                  | 13.7   | 0.74              | 1.10 | 22.2 | 16.8 | 19.2 | 1.28               | 14.8 | 95.3  | 4.4 |  |  |
| 60            | 3.38      | 1.1        | 2.5       | 19.2                  | 14.0   | 0.73              | 1.02 | 22.7 | 18.7 | 20.2 | 1.29               | 15.8 | 96.7  | 4.6 |  |  |
|               | 4.50      | 1.9        | 4.3       | 19.5                  | 14.1   | 0.72              | 0.99 | 22.9 | 19.8 | 20.8 | 1.30               | 16.3 | 97.4  | 4.7 |  |  |
|               | 2.25      | 0.4        | 0.9       | 17.1                  | 13.0   | 0.76              | 1.22 | 21.3 | 14.1 | 21.3 | 1.31               | 16.9 | 98.1  | 4.8 |  |  |
| 70            | 3.38      | 1.0        | 2.4       | 18.0                  | 13.5   | 0.75              | 1.14 | 21.9 | 15.9 | 22.4 | 1.32               | 17.9 | 99.6  | 5.0 |  |  |
|               | 4.50      | 1.8        | 4.1       | 18.4                  | 13.7   | 0.74              | 1.10 | 22.2 | 16.8 | 23.0 | 1.32               | 18.5 | 100.4 | 5.1 |  |  |
|               | 2.25      | 0.4        | 0.9       | 15.7                  | 12.3   | 0.78              | 1.34 | 20.3 | 11.7 | 23.4 | 1.33               | 18.8 | 100.8 | 5.2 |  |  |
| 80            | 3.38      | 1.0        | 2.2       | 16.6                  | 12.8   | 0.77              | 1.26 | 20.9 | 13.2 | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
|               | 4.50      | 1.7        | 4.0       | 17.1                  | 13.0   | 0.76              | 1.22 | 21.3 | 14.0 | 25.2 | 1.35               | 20.6 | 103.3 | 5.5 |  |  |
|               | 2.25      | 0.4        | 0.8       | 14.2                  | 11.6   | 0.81              | 1.48 | 19.3 | 9.6  | 25.3 | 1.35               | 20.7 | 103.5 | 5.5 |  |  |
| 90            | 3.38      | 0.9        | 2.1       | 15.1                  | 12.0   | 0.79              | 1.40 | 19.9 | 10.8 | 26.7 | 1.37               | 22.0 | 105.2 | 5.7 |  |  |
|               | 4.50      | 1.6        | 3.8       | 15.6                  | 12.2   | 0.78              | 1.36 | 20.2 | 11.5 | 27.4 | 1.38               | 22.7 | 106.1 | 5.8 |  |  |
|               | 2.25      | 0.3        | 8.0       | 12.7                  | 10.9   | 0.85              | 1.64 | 18.3 | 7.8  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
| 100           | 3.38      | 0.9        | 2.1       | 13.6                  | 11.2   | 0.83              | 1.55 | 18.9 | 8.8  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
|               | 4.50      | 1.6        | 3.7       | 14.0                  | 11.5   | 0.82              | 1.50 | 19.2 | 9.3  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
|               | 2.25      | 0.3        | 0.7       | 11.3                  | 10.2   | 0.91              | 1.80 | 17.4 | 6.3  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
| 110           | 3.38      | 0.9        | 2.0       | 12.1                  | 10.6   | 0.88              | 1.71 | 17.9 | 7.0  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
|               | 4.50      | 1.5        | 3.6       | 12.5                  | 10.7   | 0.86              | 1.67 | 18.1 | 7.5  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
|               | 2.25      | 0.3        | 0.7       | 10.0                  | 9.8    | 0.98              | 1.98 | 16.8 | 5.0  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
| 120           | 3.38      | 0.8        | 1.9       | 10.6                  | 10.0   | 0.94              | 1.89 | 17.1 | 5.6  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
|               | 4.50      | 1.5        | 3.4       | 11.0                  | 10.1   | 0.92              | 1.84 | 17.3 | 6.0  | 24.6 | 1.34               | 20.0 | 102.4 | 5.4 |  |  |
| Interpolation | is nermis | sible evtr | anolation | is not                |        |                   |      |      |      |      |                    |      |       |     |  |  |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

### Performance Data - TSL24 with PSC Motor

#### 800 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| SPM   PSI   FT   TC   SC   Sens/Tot   RM   HR   EER   HC   KW   HE   LAT   CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EVACE |      | W   | PD* |                           |      | cooling - EAT | 80/67° | F    |      | ance cap |      | ng - EA1 |       |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|-----|---------------------------|------|---------------|--------|------|------|----------|------|----------|-------|-----|
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | GPM  | PSI | FT  | тс                        |      | Sens/Tot      |        |      | EER  | нс       | kW   | HE       | LAT   | СОР |
| 16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 3.00 | 1.2 | 2.8 |                           |      |               |        |      |      |          |      |          |       |     |
| 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20    | 4.50 | 2.5 | 5.9 | Operation not recommended |      |               |        |      |      |          |      |          |       |     |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 6.00 | 4.1 | 9.6 |                           |      |               |        |      |      | 16.0     | 1.73 | 10.1     | 88.4  | 2.7 |
| 6.00   3.6   8.2   31.2   21.7   0.70   1.06   34.8   29.4   19.6   1.80   13.5   92.7   3   3.00   0.8   1.7   30.4   21.3   0.70   1.31   34.9   23.1   21.4   1.83   15.2   94.7   3   6.00   2.5   5.9   31.1   21.7   0.70   1.17   35.1   26.5   23.3   1.86   17.0   96.9   3   3   3.00   0.7   1.7   29.5   20.9   0.71   1.45   34.4   20.4   24.6   1.88   18.2   98.5   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 3.00 | 1.0 | 2.4 | 31.0                      | 21.6 | 0.70          | 1.19   | 35.1 | 26.0 | 18.1     | 1.77 | 12.1     | 90.9  | 3.0 |
| 40         3.00         0.8         1.7         30.4         21.3         0.70         1.31         34.9         23.1         21.4         1.83         15.2         94.7         3           4.50         1.6         3.6         30.9         21.6         0.70         1.22         35.1         25.4         22.6         1.85         16.3         96.1         3           6.00         2.5         5.9         31.1         21.7         0.70         1.17         35.1         26.5         23.3         1.86         17.0         96.9         3           50         4.50         1.5         3.4         30.2         21.2         0.70         1.34         34.8         22.5         26.1         1.90         19.6         90.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           4.50         1.4         3.3         29.2         20.8         0.71         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           4.50         1.4         3.1 <td>30</td> <td>4.50</td> <td>2.1</td> <td>5.0</td> <td>31.2</td> <td>21.7</td> <td>0.70</td> <td>1.10</td> <td>35.0</td> <td>28.3</td> <td>19.1</td> <td>1.79</td> <td>13.0</td> <td>92.0</td> <td>3.1</td>     | 30    | 4.50 | 2.1 | 5.0 | 31.2                      | 21.7 | 0.70          | 1.10   | 35.0 | 28.3 | 19.1     | 1.79 | 13.0     | 92.0  | 3.1 |
| 40         4.50         1.6         3.6         30.9         21.6         0.70         1.22         35.1         25.4         22.6         1.85         16.3         96.1         3           6.00         2.5         5.9         31.1         21.7         0.70         1.17         35.1         26.5         23.3         1.86         17.0         96.9         3           50         4.50         1.5         3.4         30.2         21.2         0.70         1.34         34.8         22.5         26.1         1.90         19.6         90.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           4.50         1.4         3.3         29.2         20.8         0.71         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           6.00         2.3         5.4 </td <td></td> <td>6.00</td> <td>3.6</td> <td>8.2</td> <td>31.2</td> <td>21.7</td> <td>0.70</td> <td>1.06</td> <td>34.8</td> <td>29.4</td> <td>19.6</td> <td>1.80</td> <td>13.5</td> <td>92.7</td> <td>3.2</td> |       | 6.00 | 3.6 | 8.2 | 31.2                      | 21.7 | 0.70          | 1.06   | 34.8 | 29.4 | 19.6     | 1.80 | 13.5     | 92.7  | 3.2 |
| 6.00         2.5         5.9         31.1         21.7         0.70         1.17         35.1         26.5         23.3         1.86         17.0         96.9         3           50         4.50         1.5         3.4         30.2         21.2         0.70         1.34         34.4         20.4         24.6         1.88         18.2         98.5         3           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1<                                                                                                                                                                                                               |       | 3.00 | 0.8 | 1.7 | 30.4                      | 21.3 | 0.70          | 1.31   | 34.9 | 23.1 | 21.4     | 1.83 | 15.2     | 94.7  | 3.4 |
| 50         3.00         0.7         1.7         29.5         20.9         0.71         1.45         34.4         20.4         24.6         1.88         18.2         98.5         3           4.60         1.5         3.4         30.2         21.2         0.70         1.34         34.8         22.5         26.1         1.90         19.6         90.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           6.0         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           6.0         2.4         5.6         30.5         21.4         0.70         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1 <td>40</td> <td>4.50</td> <td>1.6</td> <td>3.6</td> <td>30.9</td> <td>21.6</td> <td>0.70</td> <td>1.22</td> <td>35.1</td> <td>25.4</td> <td>22.6</td> <td>1.85</td> <td>16.3</td> <td>96.1</td> <td>3.6</td>     | 40    | 4.50 | 1.6 | 3.6 | 30.9                      | 21.6 | 0.70          | 1.22   | 35.1 | 25.4 | 22.6     | 1.85 | 16.3     | 96.1  | 3.6 |
| 50         4.50         1.5         3.4         30.2         21.2         0.70         1.34         34.8         22.5         26.1         1.90         19.6         90.1         4           6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           80         4.50         1.4         3.3         29.2         20.8         0.71         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           80         4.50 </td <td></td> <td>6.00</td> <td>2.5</td> <td>5.9</td> <td>31.1</td> <td>21.7</td> <td>0.70</td> <td>1.17</td> <td>35.1</td> <td>26.5</td> <td>23.3</td> <td>1.86</td> <td>17.0</td> <td>96.9</td> <td>3.7</td> |       | 6.00 | 2.5 | 5.9 | 31.1                      | 21.7 | 0.70          | 1.17   | 35.1 | 26.5 | 23.3     | 1.86 | 17.0     | 96.9  | 3.7 |
| 6.00         2.4         5.6         30.5         21.4         0.70         1.29         35.0         23.7         26.9         1.91         20.4         101.1         4           60         4.50         1.4         3.3         29.2         20.8         0.71         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           4.50         1.4         3.1         28.0         20.2         0.72         1.57         33.9         18.1         33.9         2.04         27.0         109.2         4           4.50         1.4         25.4         18.9         0.75         1.97         32.1         12.9         34.2         2.04         27.2         109.5           4.50         1.3         3.0         26.5 <th< td=""><td></td><td>3.00</td><td>0.7</td><td>1.7</td><td>29.5</td><td>20.9</td><td>0.71</td><td>1.45</td><td>34.4</td><td>20.4</td><td>24.6</td><td>1.88</td><td>18.2</td><td>98.5</td><td>3.8</td></th<>         |       | 3.00 | 0.7 | 1.7 | 29.5                      | 20.9 | 0.71          | 1.45   | 34.4 | 20.4 | 24.6     | 1.88 | 18.2     | 98.5  | 3.8 |
| 60         3.00         0.7         1.6         28.3         20.3         0.72         1.60         33.8         17.7         27.9         1.93         21.3         102.2         4           4.50         1.4         3.3         29.2         20.8         0.71         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           4.50         1.4         25.4         18.9         0.75         1.97         32.1         12.9         34.2         2.04         27.2         109.5         4           4.50         1.3         3.0         26                                                                                                                                                                                                               | 50    | 4.50 | 1.5 | 3.4 | 30.2                      | 21.2 | 0.70          | 1.34   | 34.8 | 22.5 | 26.1     | 1.90 | 19.6     | 90.1  | 4.0 |
| 60         4.50         1.4         3.3         29.2         20.8         0.71         1.48         34.3         19.8         29.5         1.96         22.9         104.1         4           6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           6.00         2.2         5.2         28.5         20.4         0.72         1.57         33.9         18.1         33.9         2.04         27.0         109.2         4           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           80 <td></td> <td>6.00</td> <td>2.4</td> <td>5.6</td> <td>30.5</td> <td>21.4</td> <td>0.70</td> <td>1.29</td> <td>35.0</td> <td>23.7</td> <td>26.9</td> <td>1.91</td> <td>20.4</td> <td>101.1</td> <td>4.1</td>      |       | 6.00 | 2.4 | 5.6 | 30.5                      | 21.4 | 0.70          | 1.29   | 35.0 | 23.7 | 26.9     | 1.91 | 20.4     | 101.1 | 4.1 |
| 6.00         2.3         5.4         29.7         21.0         0.71         1.42         34.5         20.8         30.5         1.97         23.7         105.2         4           70         4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           6.00         2.2         5.2         28.5         20.4         0.72         1.57         33.9         18.1         33.9         2.04         27.0         109.2         4           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.04         27.2         109.5         4           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           90         4.50<                                                                                                                                                                                                               |       | 3.00 | 0.7 | 1.6 | 28.3                      | 20.3 | 0.72          | 1.60   | 33.8 | 17.7 | 27.9     | 1.93 | 21.3     | 102.2 | 4.2 |
| 3.00         0.7         1.5         26.9         19.7         0.73         1.77         33.0         15.2         31.1         1.98         24.3         105.9         4           4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           6.00         2.2         5.2         28.5         20.4         0.72         1.57         33.9         18.1         33.9         2.04         27.0         109.2         4           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           90         4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           90         4.50         1.2                                                                                                                                                                                                               | 60    | 4.50 | 1.4 | 3.3 | 29.2                      | 20.8 | 0.71          | 1.48   | 34.3 | 19.8 | 29.5     | 1.96 | 22.9     | 104.1 | 4.4 |
| 70         4.50         1.4         3.1         28.0         20.2         0.72         1.64         33.6         17.1         32.9         2.02         26.0         108.0         4           6.00         2.2         5.2         28.5         20.4         0.72         1.57         33.9         18.1         33.9         2.04         27.0         109.2         4           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           90         4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           90         4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00<                                                                                                                                                                                                               |       | 6.00 | 2.3 | 5.4 | 29.7                      | 21.0 | 0.71          | 1.42   | 34.5 | 20.8 | 30.5     | 1.97 | 23.7     | 105.2 | 4.5 |
| 6.00         2.2         5.2         28.5         20.4         0.72         1.57         33.9         18.1         33.9         2.04         27.0         109.2         4           80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           3.00         0.6         1.4         23.7         18.2         0.77         2.20         31.2         10.8         37.2         2.12         30.1         113.1         5           4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           100         4.50         1.2         2                                                                                                                                                                                                               |       | 3.00 | 0.7 | 1.5 | 26.9                      | 19.7 | 0.73          | 1.77   | 33.0 | 15.2 | 31.1     | 1.98 | 24.3     | 105.9 | 4.6 |
| 80         3.00         0.6         1.4         25.4         18.9         0.75         1.97         32.1         12.9         34.2         2.04         27.2         109.5         4           4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           3.00         0.6         1.4         23.7         18.2         0.77         2.20         31.2         10.8         37.2         2.12         30.0         112.9         5           4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           3.00         0.6         1.3         2                                                                                                                                                                                                               | 70    | 4.50 | 1.4 | 3.1 | 28.0                      | 20.2 | 0.72          | 1.64   | 33.6 | 17.1 | 32.9     | 2.02 | 26.0     | 108.0 | 4.8 |
| 80         4.50         1.3         3.0         26.5         19.5         0.73         1.82         32.7         14.6         36.2         2.09         29.1         111.8         5           6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           3.00         0.6         1.4         23.7         18.2         0.77         2.20         31.2         10.8         37.2         2.12         30.0         112.9         5           4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           3.00         0.6         1.3         22.0         17.3         0.79         2.46         30.4         8.9         37.3         2.12         30.1         113.1         5           4.50         1.2         2.8         23                                                                                                                                                                                                               |       | 6.00 | 2.2 | 5.2 | 28.5                      | 20.4 | 0.72          | 1.57   | 33.9 | 18.1 | 33.9     | 2.04 | 27.0     | 109.2 | 4.9 |
| 6.00         2.1         5.0         27.1         19.8         0.73         1.75         33.1         15.5         37.3         2.12         30.1         113.1         5           90         4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           3.00         0.6         1.3         22.0         17.3         0.79         2.46         30.4         8.9         37.3         2.12         30.1         113.1         5           4.50         1.2         2.8         23.2         17.9         0.77         2.27         30.9         10.2         37.3         2.12         30.1         113.1         5           6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20                                                                                                                                                                                                               |       | 3.00 | 0.6 | 1.4 | 25.4                      | 18.9 | 0.75          | 1.97   | 32.1 | 12.9 | 34.2     | 2.04 | 27.2     | 109.5 | 4.9 |
| 90         3.00         0.6         1.4         23.7         18.2         0.77         2.20         31.2         10.8         37.2         2.12         30.0         112.9         5           4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           3.00         0.6         1.3         22.0         17.3         0.79         2.46         30.4         8.9         37.3         2.12         30.1         113.1         5           4.50         1.2         2.8         23.2         17.9         0.77         2.27         30.9         10.2         37.3         2.12         30.1         113.1         5           6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20                                                                                                                                                                                                               | 80    | 4.50 | 1.3 | 3.0 | 26.5                      | 19.5 | 0.73          | 1.82   | 32.7 | 14.6 | 36.2     | 2.09 | 29.1     | 111.8 | 5.1 |
| 90         4.50         1.2         2.9         24.9         18.7         0.75         2.03         31.8         12.3         39.3         2.18         31.9         115.4         5           6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           3.00         0.6         1.3         22.0         17.3         0.79         2.46         30.4         8.9         37.3         2.12         30.1         113.1         5           4.50         1.2         2.8         23.2         17.9         0.77         2.27         30.9         10.2         37.3         2.12         30.1         113.1         5           6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20.2         16.4         0.81         2.76         29.6         7.3         37.3         2.12         30.1         113.1         5           4.50         1.2         2.7         21.                                                                                                                                                                                                               |       | 6.00 | 2.1 | 5.0 | 27.1                      | 19.8 | 0.73          | 1.75   | 33.1 | 15.5 | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| 6.00         2.1         4.8         25.5         19.0         0.75         1.95         32.2         13.1         40.5         2.22         32.9         116.7         5           3.00         0.6         1.3         22.0         17.3         0.79         2.46         30.4         8.9         37.3         2.12         30.1         113.1         5           4.50         1.2         2.8         23.2         17.9         0.77         2.27         30.9         10.2         37.3         2.12         30.1         113.1         5           6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20.2         16.4         0.81         2.76         29.6         7.3         37.3         2.12         30.1         113.1         5           4.50         1.2         2.7         21.4         17.0         0.80         2.55         30.1         8.4         37.3         2.12         30.1         113.1         5           6.00         1.9         4.5         22.0         17                                                                                                                                                                                                               |       | 3.00 | 0.6 | 1.4 | 23.7                      | 18.2 | 0.77          | 2.20   | 31.2 | 10.8 | 37.2     | 2.12 | 30.0     | 112.9 | 5.2 |
| 100         3.00         0.6         1.3         22.0         17.3         0.79         2.46         30.4         8.9         37.3         2.12         30.1         113.1         5           4.50         1.2         2.8         23.2         17.9         0.77         2.27         30.9         10.2         37.3         2.12         30.1         113.1         5           6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20.2         16.4         0.81         2.76         29.6         7.3         37.3         2.12         30.1         113.1         5           4.50         1.2         2.7         21.4         17.0         0.80         2.55         30.1         8.4         37.3         2.12         30.1         113.1         5           6.00         1.9         4.5         22.0         17.3         0.79         2.45         30.4         9.0         37.3         2.12         30.1         113.1         5                                                                                                                                                                                                                                                                   | 90    | 4.50 | 1.2 | 2.9 | 24.9                      | 18.7 | 0.75          | 2.03   | 31.8 | 12.3 | 39.3     | 2.18 | 31.9     | 115.4 | 5.3 |
| 100         4.50         1.2         2.8         23.2         17.9         0.77         2.27         30.9         10.2         37.3         2.12         30.1         113.1         5           6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20.2         16.4         0.81         2.76         29.6         7.3         37.3         2.12         30.1         113.1         5           4.50         1.2         2.7         21.4         17.0         0.80         2.55         30.1         8.4         37.3         2.12         30.1         113.1         5           6.00         1.9         4.5         22.0         17.3         0.79         2.45         30.4         9.0         37.3         2.12         30.1         113.1         5                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 6.00 | 2.1 | 4.8 | 25.5                      | 19.0 | 0.75          | 1.95   | 32.2 | 13.1 | 40.5     | 2.22 | 32.9     | 116.7 | 5.3 |
| 6.00         2.0         4.6         23.8         18.2         0.76         2.18         31.3         10.9         37.3         2.12         30.1         113.1         5           3.00         0.6         1.3         20.2         16.4         0.81         2.76         29.6         7.3         37.3         2.12         30.1         113.1         5           4.50         1.2         2.7         21.4         17.0         0.80         2.55         30.1         8.4         37.3         2.12         30.1         113.1         5           6.00         1.9         4.5         22.0         17.3         0.79         2.45         30.4         9.0         37.3         2.12         30.1         113.1         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 3.00 | 0.6 | 1.3 | 22.0                      | 17.3 | 0.79          | 2.46   | 30.4 | 8.9  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| 3.00     0.6     1.3     20.2     16.4     0.81     2.76     29.6     7.3     37.3     2.12     30.1     113.1     5       4.50     1.2     2.7     21.4     17.0     0.80     2.55     30.1     8.4     37.3     2.12     30.1     113.1     5       6.00     1.9     4.5     22.0     17.3     0.79     2.45     30.4     9.0     37.3     2.12     30.1     113.1     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100   | 4.50 | 1.2 | 2.8 | 23.2                      | 17.9 | 0.77          | 2.27   | 30.9 | 10.2 | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| 110     4.50     1.2     2.7     21.4     17.0     0.80     2.55     30.1     8.4     37.3     2.12     30.1     113.1     5       6.00     1.9     4.5     22.0     17.3     0.79     2.45     30.4     9.0     37.3     2.12     30.1     113.1     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 6.00 | 2.0 | 4.6 | 23.8                      | 18.2 | 0.76          | 2.18   | 31.3 | 10.9 | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| 6.00 1.9 4.5 22.0 17.3 0.79 2.45 30.4 9.0 37.3 2.12 30.1 113.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 3.00 | 0.6 | 1.3 | 20.2                      | 16.4 | 0.81          | 2.76   | 29.6 | 7.3  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110   | 4.50 | 1.2 | 2.7 | 21.4                      | 17.0 | 0.80          | 2.55   | 30.1 | 8.4  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| 3.00 0.5 1.2 18.4 15.5 0.84 3.12 29.1 5.9 37.3 2.12 30.1 113.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 6.00 | 1.9 | 4.5 | 22.0                      | 17.3 | 0.79          | 2.45   | 30.4 | 9.0  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 3.00 | 0.5 | 1.2 | 18.4                      | 15.5 | 0.84          | 3.12   | 29.1 | 5.9  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| <b>120</b> 4.50 1.1 2.6 19.6 16.1 0.82 2.88 29.4 6.8 37.3 2.12 30.1 113.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120   | 4.50 | 1.1 | 2.6 | 19.6                      | 16.1 | 0.82          | 2.88   | 29.4 | 6.8  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |
| 6.00 1.9 4.4 20.2 16.4 0.81 2.76 29.6 7.3 37.3 2.12 30.1 113.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 6.00 | 1.9 | 4.4 | 20.2                      | 16.4 | 0.81          | 2.76   | 29.6 | 7.3  | 37.3     | 2.12 | 30.1     | 113.1 | 5.2 |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL30 with PSC Motor

### 1,000 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| EWT |      | WPD* |      | Cooling - EAT 80/67°F |       |                   |       |      |      |      | Heatir | ng - EAT | 70°F  |     |
|-----|------|------|------|-----------------------|-------|-------------------|-------|------|------|------|--------|----------|-------|-----|
| °F  | GPM  | PSI  | FT   | тс                    | sc    | Sens/Tot<br>Ratio | kW    | HR   | EER  | нс   | kW     | HE       | LAT   | СОР |
|     | 3.75 | 1.5  | 3.5  |                       |       |                   |       |      |      |      |        |          |       |     |
| 20  | 5.63 | 3.3  | 7.5  |                       | Opera | tion not re       | comme | nded |      |      |        |          |       |     |
|     | 7.50 | 5.4  | 12.6 |                       |       |                   |       |      |      | 17.9 | 1.88   | 11.5     | 86.5  | 2.8 |
|     | 3.75 | 1.3  | 3.1  | 33.7                  | 23.5  | 0.70              | 1.29  | 38.1 | 26.2 | 20.2 | 1.89   | 13.7     | 88.7  | 3.1 |
| 30  | 5.63 | 2.9  | 6.6  | 33.3                  | 22.8  | 0.69              | 1.21  | 37.5 | 27.6 | 21.1 | 1.90   | 14.7     | 89.5  | 3.3 |
|     | 7.50 | 5.0  | 11.6 | 33.0                  | 22.4  | 0.68              | 1.17  | 37.0 | 28.1 | 21.6 | 1.90   | 15.1     | 90.0  | 3.3 |
|     | 3.75 | 1.0  | 2.3  | 33.6                  | 23.7  | 0.71              | 1.41  | 38.4 | 23.9 | 23.6 | 1.92   | 17.0     | 91.8  | 3.6 |
| 40  | 5.63 | 2.1  | 4.9  | 33.7                  | 23.6  | 0.70              | 1.32  | 38.2 | 25.5 | 24.7 | 1.93   | 18.1     | 92.8  | 3.7 |
|     | 7.50 | 3.5  | 8.0  | 33.7                  | 23.4  | 0.70              | 1.28  | 38.1 | 26.3 | 25.3 | 1.94   | 18.7     | 93.4  | 3.8 |
|     | 3.75 | 1.0  | 2.2  | 32.9                  | 23.4  | 0.71              | 1.54  | 38.1 | 21.3 | 26.9 | 1.95   | 20.2     | 94.8  | 4.0 |
| 50  | 5.63 | 2.0  | 4.7  | 33.4                  | 23.7  | 0.71              | 1.45  | 38.4 | 23.1 | 28.2 | 1.97   | 21.4     | 96.0  | 4.2 |
|     | 7.50 | 3.4  | 7.9  | 33.6                  | 23.7  | 0.71              | 1.40  | 38.4 | 24.0 | 28.9 | 1.98   | 22.1     | 96.7  | 4.3 |
|     | 3.75 | 0.9  | 2.1  | 31.7                  | 22.8  | 0.72              | 1.70  | 37.5 | 18.7 | 30.1 | 2.00   | 23.3     | 97.8  | 4.4 |
| 60  | 5.63 | 2.0  | 4.5  | 32.5                  | 23.3  | 0.72              | 1.59  | 38.0 | 20.5 | 31.6 | 2.02   | 24.7     | 99.2  | 4.6 |
|     | 7.50 | 3.3  | 7.7  | 32.9                  | 23.5  | 0.71              | 1.54  | 38.1 | 21.4 | 32.4 | 2.03   | 25.5     | 100.0 | 4.7 |
|     | 3.75 | 0.9  | 2.0  | 30.1                  | 21.9  | 0.73              | 1.87  | 36.5 | 16.1 | 33.3 | 2.05   | 26.3     | 100.8 | 4.8 |
| 70  | 5.63 | 1.9  | 4.4  | 31.2                  | 22.5  | 0.72              | 1.75  | 37.2 | 17.8 | 35.0 | 2.08   | 27.9     | 102.3 | 4.9 |
|     | 7.50 | 3.2  | 7.5  | 31.7                  | 22.8  | 0.72              | 1.69  | 37.5 | 18.7 | 35.9 | 2.10   | 28.7     | 103.2 | 5.0 |
|     | 3.75 | 0.9  | 2.0  | 28.3                  | 20.9  | 0.74              | 2.08  | 35.4 | 13.6 | 36.5 | 2.11   | 29.3     | 103.7 | 5.1 |
| 80  | 5.63 | 1.8  | 4.2  | 29.5                  | 21.6  | 0.73              | 1.94  | 36.1 | 15.2 | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
|     | 7.50 | 3.2  | 7.3  | 30.1                  | 21.9  | 0.73              | 1.88  | 36.5 | 16.0 | 39.4 | 2.18   | 31.9     | 106.4 | 5.3 |
|     | 3.75 | 0.8  | 1.9  | 26.2                  | 19.9  | 0.76              | 2.31  | 34.1 | 11.3 | 39.7 | 2.19   | 32.2     | 106.7 | 5.3 |
| 90  | 5.63 | 1.8  | 4.1  | 27.5                  | 20.5  | 0.75              | 2.16  | 34.9 | 12.7 | 41.7 | 2.24   | 34.1     | 108.5 | 5.5 |
|     | 7.50 | 3.1  | 7.1  | 28.2                  | 20.9  | 0.74              | 2.09  | 35.3 | 13.5 | 42.8 | 2.27   | 35.0     | 109.5 | 5.5 |
|     | 3.75 | 0.8  | 1.8  | 24.1                  | 18.9  | 0.78              | 2.58  | 32.9 | 9.3  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
| 100 | 5.63 | 1.7  | 3.9  | 25.4                  | 19.5  | 0.77              | 2.41  | 33.6 | 10.5 | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
|     | 7.50 | 3.0  | 6.8  | 26.1                  | 19.8  | 0.76              | 2.33  | 34.0 | 11.2 | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
|     | 3.75 | 0.8  | 1.8  | 21.9                  | 17.9  | 0.82              | 2.90  | 31.8 | 7.6  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
| 110 | 5.63 | 1.7  | 3.8  | 23.2                  | 18.5  | 0.80              | 2.71  | 32.4 | 8.6  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
|     | 7.50 | 2.8  | 6.6  | 23.8                  | 18.8  | 0.79              | 2.62  | 32.8 | 9.1  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
|     | 3.75 | 0.7  | 1.7  | 19.7                  | 17.1  | 0.87              | 3.25  | 30.8 | 6.1  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
| 120 | 5.63 | 1.6  | 3.7  | 20.9                  | 17.6  | 0.84              | 3.05  | 31.3 | 6.9  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |
|     | 7.50 | 2.7  | 6.3  | 21.6                  | 17.8  | 0.83              | 2.94  | 31.6 | 7.3  | 38.4 | 2.15   | 31.0     | 105.4 | 5.2 |

Interpolation is permissible, extrapolation is not. All entering air conditions are  $80^\circ F$  DB and  $67^\circ F$  WB in cooling and  $70^\circ F$  DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL36 with PSC Motor

#### 1,200 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| =14(= |      | WPD* |              |      | Co    | ooling - EA       | Γ 80/67° | Heating - EAT 70°F |      |      |      |      |       |     |
|-------|------|------|--------------|------|-------|-------------------|----------|--------------------|------|------|------|------|-------|-----|
| °F    | GPM  | PSI  | FT           | тс   | sc    | Sens/Tot<br>Ratio | kW       | HR                 | EER  | нс   | kW   | HE   | LAT   | СОР |
|       | 4.50 | 2.2  | 5.1          |      |       |                   |          |                    |      |      |      |      |       |     |
| 20    | 6.75 | 4.5  | 10.3         |      | Opera | ition not re      | comme    | ended              |      |      |      |      |       |     |
|       | 9.00 | 7.2  | 16.7         |      |       |                   |          |                    |      | 22.7 | 2.25 | 15.1 | 87.5  | 3.0 |
|       | 4.50 | 1.8  | 4.2          | 41.0 | 28.2  | 0.69              | 1.65     | 46.6               | 24.8 | 25.1 | 2.29 | 17.3 | 89.3  | 3.2 |
| 30    | 6.75 | 3.6  | 8.4          | 40.1 | 27.4  | 0.68              | 1.55     | 45.4               | 25.8 | 26.1 | 2.30 | 18.3 | 90.1  | 3.3 |
|       | 9.00 | 5.9  | 13.6         | 39.4 | 26.9  | 0.68              | 1.51     | 44.5               | 26.1 | 26.7 | 2.31 | 18.8 | 90.5  | 3.4 |
|       | 4.50 | 1.5  | 3.4          | 41.2 | 28.6  | 0.69              | 1.80     | 47.3               | 22.8 | 28.9 | 2.35 | 20.9 | 92.3  | 3.6 |
| 40    | 6.75 | 2.9  | 6.8          | 41.2 | 28.4  | 0.69              | 1.69     | 46.9               | 24.3 | 30.3 | 2.37 | 22.2 | 93.3  | 3.7 |
|       | 9.00 | 4.8  | 11.0         | 40.9 | 28.1  | 0.69              | 1.64     | 46.5               | 24.9 | 31.0 | 2.38 | 22.9 | 93.9  | 3.8 |
|       | 4.50 | 1.4  | 3.2          | 40.4 | 28.4  | 0.70              | 1.97     | 47.1               | 20.5 | 33.0 | 2.42 | 24.7 | 95.4  | 4.0 |
| 50    | 6.75 | 2.8  | 6.4          | 41.0 | 28.6  | 0.70              | 1.85     | 47.3               | 22.2 | 34.6 | 2.44 | 26.2 | 96.6  | 4.1 |
|       | 9.00 | 4.5  | 10.4         | 41.2 | 28.6  | 0.69              | 1.79     | 47.3               | 23.0 | 35.4 | 2.46 | 27.0 | 97.3  | 4.2 |
|       | 4.50 | 1.3  | 3.1          | 38.8 | 27.7  | 0.71              | 2.16     | 46.2               | 17.9 | 37.0 | 2.49 | 28.5 | 98.5  | 4.4 |
| 60    | 6.75 | 2.6  | 6.1          | 40.0 | 28.2  | 0.71              | 2.03     | 46.9               | 19.7 | 38.8 | 2.52 | 30.2 | 99.9  | 4.5 |
|       | 9.00 | 4.3  | 9.9          | 40.4 | 28.4  | 0.70              | 1.96     | 47.1               | 20.6 | 39.8 | 2.54 | 31.1 | 100.6 | 4.6 |
|       | 4.50 | 1.3  | 2.9          | 36.8 | 26.7  | 0.72              | 2.39     | 45.0               | 15.4 | 40.9 | 2.56 | 32.2 | 101.5 | 4.7 |
| 70    | 6.75 | 2.5  | 5.8          | 38.3 | 27.4  | 0.72              | 2.23     | 45.9               | 17.2 | 42.8 | 2.59 | 34.0 | 103.0 | 4.8 |
|       | 9.00 | 4.0  | 9.3          | 38.9 | 27.7  | 0.71              | 2.16     | 46.3               | 18.1 | 43.8 | 2.61 | 34.9 | 103.7 | 4.9 |
|       | 4.50 | 1.2  | 2.7          | 34.5 | 25.4  | 0.74              | 2.65     | 43.5               | 13.0 | 44.5 | 2.63 | 35.6 | 104.3 | 5.0 |
| 80    | 6.75 | 2.3  | 5.4          | 36.1 | 26.3  | 0.73              | 2.47     | 44.5               | 14.6 | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       | 9.00 | 3.8  | 8.8          | 36.9 | 26.7  | 0.72              | 2.38     | 45.0               | 15.5 | 47.2 | 2.68 | 38.0 | 106.3 | 5.2 |
|       | 4.50 | 1.1  | 2.6          | 32.0 | 24.0  | 0.75              | 2.96     | 42.1               | 10.8 | 47.6 | 2.69 | 38.4 | 106.6 | 5.2 |
| 90    | 6.75 | 2.2  | 5.1          | 33.6 | 24.9  | 0.74              | 2.75     | 43.0               | 12.2 | 49.1 | 2.73 | 39.8 | 107.8 | 5.3 |
|       | 9.00 | 3.6  | 8.3          | 34.4 | 25.4  | 0.74              | 2.66     | 43.5               | 13.0 | 49.7 | 2.74 | 40.4 | 108.3 | 5.3 |
|       | 4.50 | 1.1  | 2.5          | 29.4 | 22.6  | 0.77              | 3.33     | 40.8               | 8.9  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
| 100   | 6.75 | 2.1  | 4.9          | 31.0 | 23.5  | 0.76              | 3.09     | 41.6               | 10.0 | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       | 9.00 | 3.5  | 8.0          | 31.8 | 23.9  | 0.75              | 2.98     | 42.0               | 10.7 | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       | 4.50 | 1.0  | 2.4          | 27.0 | 21.2  | 0.78              | 3.76     | 39.8               | 7.2  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
| 110   | 6.75 | 2.0  | 4.7          | 28.5 | 22.0  | 0.77              | 3.49     | 40.4               | 8.2  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       | 9.00 | 3.3  | 7.7          | 29.2 | 22.4  | 0.77              | 3.36     | 40.7               | 8.7  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       | 4.50 | 1.0  | 2.3          | 24.9 | 20.0  | 0.80              | 4.28     | 39.5               | 5.8  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
| 120   | 6.75 | 2.0  | 4.5          | 26.1 | 20.7  | 0.79              | 3.96     | 39.6               | 6.6  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       | 9.00 | 3.2  | 7.4          | 26.8 | 21.1  | 0.79              | 3.81     | 39.8               | 7.0  | 46.3 | 2.66 | 37.2 | 105.7 | 5.1 |
|       |      |      | rtrapolation |      |       |                   |          |                    |      |      |      |      |       |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

### Performance Data - TSL09 with ECM Motor

### **400 CFM Nominal Airflow**

Performance capacities shown in thousands of Btuh

| EWT           |      | W   | PD   | Cooling - EAT 80/67°F |      |                   |        |      |      |      | Heatin | ig - EAT 7 | '0°F  |     |
|---------------|------|-----|------|-----------------------|------|-------------------|--------|------|------|------|--------|------------|-------|-----|
| °F            | GPM  | PSI | FT   | тс                    | sc   | Sens/Tot<br>Ratio | kW     | HR   | EER  | нс   | kW     | HE         | LAT   | СОР |
|               | 1.13 | 1.6 | 3.6  |                       |      |                   |        |      |      |      |        |            |       |     |
| 20            | 1.69 | 3.0 | 6.9  |                       | Oper | ation not r       | ecomme | nded |      |      |        |            |       |     |
|               | 2.25 | 4.9 | 11.3 |                       |      |                   |        |      |      | 5.9  | 0.67   | 3.7        | 83.7  | 2.6 |
|               | 1.13 | 1.2 | 2.8  | 12.2                  | 9.0  | 0.74              | 0.48   | 13.9 | 25.4 | 6.7  | 0.68   | 4.4        | 85.5  | 2.9 |
| 30            | 1.69 | 2.7 | 6.2  | 12.2                  | 8.7  | 0.72              | 0.45   | 13.7 | 26.8 | 7.0  | 0.68   | 4.7        | 86.3  | 3.0 |
|               | 2.25 | 4.5 | 10.3 | 12.0                  | 8.5  | 0.71              | 0.44   | 13.6 | 27.2 | 7.2  | 0.68   | 4.9        | 86.7  | 3.1 |
|               | 1.13 | 1.0 | 2.4  | 12.0                  | 9.1  | 0.75              | 0.53   | 13.8 | 22.8 | 7.9  | 0.69   | 5.6        | 88.3  | 3.4 |
| 40            | 1.69 | 1.9 | 4.5  | 12.2                  | 9.0  | 0.74              | 0.49   | 13.9 | 24.9 | 8.4  | 0.69   | 6.0        | 89.3  | 3.5 |
|               | 2.25 | 3.1 | 7.3  | 12.3                  | 9.0  | 0.73              | 0.47   | 13.9 | 25.8 | 8.6  | 0.70   | 6.2        | 89.9  | 3.6 |
|               | 1.13 | 1.0 | 2.2  | 11.6                  | 8.9  | 0.77              | 0.58   | 13.6 | 20.0 | 9.2  | 0.70   | 6.8        | 91.2  | 3.8 |
| 50            | 1.69 | 1.9 | 4.3  | 12.0                  | 9.0  | 0.75              | 0.54   | 13.8 | 22.3 | 9.7  | 0.71   | 7.3        | 92.5  | 4.0 |
|               | 2.25 | 3.1 | 7.1  | 12.1                  | 9.1  | 0.75              | 0.52   | 13.9 | 23.4 | 10.1 | 0.71   | 7.6        | 93.2  | 4.2 |
|               | 1.13 | 0.9 | 2.1  | 11.0                  | 8.6  | 0.78              | 0.64   | 13.1 | 17.2 | 10.4 | 0.71   | 8.0        | 94.1  | 4.3 |
| 60            | 1.69 | 1.8 | 4.2  | 11.5                  | 8.8  | 0.77              | 0.59   | 13.5 | 19.4 | 11.1 | 0.72   | 8.7        | 95.7  | 4.5 |
|               | 2.25 | 3.0 | 6.9  | 11.7                  | 8.9  | 0.76              | 0.57   | 13.6 | 20.6 | 11.5 | 0.72   | 9.1        | 96.6  | 4.7 |
|               | 1.13 | 0.8 | 1.9  | 10.2                  | 8.2  | 0.80              | 0.70   | 12.6 | 14.6 | 11.8 | 0.72   | 9.3        | 97.1  | 4.8 |
| 70            | 1.69 | 1.8 | 4.1  | 10.8                  | 8.5  | 0.78              | 0.65   | 13.0 | 16.6 | 12.6 | 0.73   | 10.1       | 99.0  | 5.1 |
|               | 2.25 | 2.9 | 6.7  | 11.1                  | 8.6  | 0.78              | 0.63   | 13.2 | 17.7 | 13.0 | 0.73   | 10.5       | 100.1 | 5.2 |
|               | 1.13 | 0.8 | 1.8  | 9.4                   | 7.7  | 0.82              | 0.77   | 12.0 | 12.3 | 13.1 | 0.73   | 10.6       | 100.2 | 5.2 |
| 80            | 1.69 | 1.7 | 3.9  | 10.0                  | 8.0  | 0.80              | 0.72   | 12.5 | 14.0 | 14.0 | 0.74   | 11.5       | 102.3 | 5.6 |
|               | 2.25 | 2.8 | 6.5  | 10.3                  | 8.2  | 0.79              | 0.69   | 12.7 | 14.9 | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
|               | 1.13 | 0.7 | 1.7  | 8.6                   | 7.2  | 0.84              | 0.83   | 11.4 | 10.3 | 14.4 | 0.74   | 11.9       | 103.2 | 5.7 |
| 90            | 1.69 | 1.6 | 3.8  | 9.2                   | 7.5  | 0.82              | 0.79   | 11.9 | 11.7 | 15.4 | 0.74   | 12.9       | 105.6 | 6.1 |
|               | 2.25 | 2.8 | 6.4  | 9.5                   | 7.7  | 0.81              | 0.76   | 12.1 | 12.5 | 16.0 | 0.75   | 13.5       | 107.0 | 6.3 |
|               | 1.13 | 0.7 | 1.7  | 7.7                   | 6.7  | 0.87              | 0.91   | 10.8 | 8.6  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
| 100           | 1.69 | 1.6 | 3.7  | 8.3                   | 7.0  | 0.85              | 0.86   | 11.2 | 9.7  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
|               | 2.25 | 2.7 | 6.2  | 8.6                   | 7.2  | 0.84              | 0.83   | 11.4 | 10.3 | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
|               | 1.13 | 0.7 | 1.6  | 6.9                   | 6.3  | 0.91              | 0.98   | 10.3 | 7.1  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
| 110           | 1.69 | 1.6 | 3.6  | 7.4                   | 6.6  | 0.88              | 0.93   | 10.6 | 8.0  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
|               | 2.25 | 2.6 | 6.1  | 7.7                   | 6.7  | 0.87              | 0.91   | 10.8 | 8.5  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
|               | 1.13 | 0.7 | 1.6  | 6.2                   | 6.0  | 0.96              | 1.05   | 9.8  | 5.9  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
| 120           | 1.69 | 1.5 | 3.5  | 6.6                   | 6.2  | 0.93              | 1.01   | 10.1 | 6.6  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
|               | 2.25 | 2.6 | 5.9  | 6.9                   | 6.3  | 0.91              | 0.98   | 10.2 | 7.0  | 14.5 | 0.74   | 12.0       | 103.5 | 5.8 |
| Internolation |      |     | 1.11 |                       |      |                   |        | 1    | 1    |      |        |            |       |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL12 with ECM Motor

### 450 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

| EVA/T |      | W   | PD            |      | Co    | oling - EAT       | 80/67° | F    |      |      |      | ing - EAT | 70°F  |     |
|-------|------|-----|---------------|------|-------|-------------------|--------|------|------|------|------|-----------|-------|-----|
| °F    | GPM  | PSI | FT            | тс   | sc    | Sens/Tot<br>Ratio | kW     | HR   | EER  | нс   | kW   | HE        | LAT   | СОР |
|       | 1.50 | 2.3 | 5.3           |      |       |                   |        |      |      |      |      |           |       |     |
| 20    | 2.25 | 4.7 | 10.8          |      | Opera | tion not red      | comme  | nded |      |      |      |           |       |     |
|       | 3.00 | 7.8 | 18.0          |      |       |                   |        |      |      | 7.2  | 0.82 | 4.4       | 84.9  | 2.6 |
|       | 1.50 | 2.1 | 4.7           | 14.5 | 9.7   | 0.67              | 0.58   | 16.5 | 25.0 | 8.4  | 0.84 | 5.5       | 87.3  | 2.9 |
| 30    | 2.25 | 4.3 | 9.9           | 14.3 | 9.3   | 0.65              | 0.55   | 16.1 | 25.7 | 8.8  | 0.85 | 6.0       | 88.2  | 3.1 |
|       | 3.00 | 7.0 | 16.2          | 14.0 | 9.0   | 0.64              | 0.55   | 15.9 | 25.7 | 9.1  | 0.85 | 6.2       | 88.6  | 3.1 |
|       | 1.50 | 1.5 | 3.6           | 14.4 | 10.0  | 0.69              | 0.63   | 16.6 | 22.9 | 10.0 | 0.86 | 7.1       | 90.6  | 3.4 |
| 40    | 2.25 | 3.1 | 7.3           | 14.5 | 9.8   | 0.67              | 0.59   | 16.5 | 24.6 | 10.6 | 0.87 | 7.6       | 91.7  | 3.6 |
|       | 3.00 | 5.2 | 12.1          | 14.5 | 9.6   | 0.67              | 0.57   | 16.4 | 25.2 | 10.9 | 0.87 | 7.9       | 92.3  | 3.6 |
|       | 1.50 | 1.5 | 3.5           | 14.0 | 9.9   | 0.71              | 0.69   | 16.4 | 20.3 | 11.6 | 0.88 | 8.6       | 93.8  | 3.9 |
| 50    | 2.25 | 3.1 | 7.1           | 14.4 | 10.0  | 0.69              | 0.64   | 16.6 | 22.3 | 12.2 | 0.89 | 9.2       | 95.1  | 4.0 |
|       | 3.00 | 5.1 | 11.8          | 14.5 | 9.9   | 0.69              | 0.62   | 16.6 | 23.3 | 12.6 | 0.90 | 9.6       | 95.9  | 4.1 |
|       | 1.50 | 1.5 | 3.4           | 13.4 | 9.7   | 0.73              | 0.76   | 16.0 | 17.5 | 13.2 | 0.90 | 10.1      | 97.0  | 4.3 |
| 60    | 2.25 | 3.0 | 6.9           | 13.9 | 9.9   | 0.71              | 0.71   | 16.3 | 19.6 | 13.9 | 0.91 | 10.8      | 98.6  | 4.5 |
|       | 3.00 | 5.0 | 11.4          | 14.1 | 10.0  | 0.71              | 0.68   | 16.4 | 20.6 | 14.4 | 0.92 | 11.2      | 99.5  | 4.6 |
|       | 1.50 | 1.4 | 3.3           | 12.6 | 9.4   | 0.75              | 0.84   | 15.5 | 15.0 | 14.8 | 0.92 | 11.6      | 100.3 | 4.7 |
| 70    | 2.25 | 2.9 | 6.7           | 13.2 | 9.7   | 0.73              | 0.78   | 15.9 | 16.8 | 15.7 | 0.94 | 12.5      | 102.1 | 4.9 |
|       | 3.00 | 4.8 | 11.1          | 13.5 | 9.8   | 0.73              | 0.76   | 16.1 | 17.8 | 16.2 | 0.94 | 12.9      | 103.2 | 5.0 |
|       | 1.50 | 1.4 | 3.2           | 11.7 | 9.0   | 0.77              | 0.93   | 14.8 | 12.6 | 16.4 | 0.94 | 13.1      | 103.6 | 5.1 |
| 80    | 2.25 | 2.8 | 6.5           | 12.3 | 9.3   | 0.75              | 0.87   | 15.3 | 14.2 | 17.4 | 0.96 | 14.2      | 105.8 | 5.3 |
|       | 3.00 | 4.7 | 10.8          | 12.7 | 9.4   | 0.74              | 0.84   | 15.5 | 15.1 | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       | 1.50 | 1.3 | 3.1           | 10.7 | 8.5   | 0.79              | 1.01   | 14.2 | 10.6 | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
| 90    | 2.25 | 2.8 | 6.4           | 11.4 | 8.8   | 0.77              | 0.95   | 14.6 | 11.9 | 19.3 | 0.98 | 15.9      | 109.6 | 5.8 |
|       | 3.00 | 4.6 | 10.5          | 11.7 | 9.0   | 0.77              | 0.92   | 14.9 | 12.7 | 20.0 | 0.99 | 16.6      | 111.0 | 5.9 |
|       | 1.50 | 1.3 | 3.0           | 9.7  | 7.9   | 0.82              | 1.10   | 13.5 | 8.8  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
| 100   | 2.25 | 2.7 | 6.2           | 10.3 | 8.3   | 0.80              | 1.05   | 13.9 | 9.9  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       | 3.00 | 4.5 | 10.3          | 10.7 | 8.4   | 0.79              | 1.02   | 14.1 | 10.5 | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       | 1.50 | 1.3 | 2.9           | 8.7  | 7.4   | 0.85              | 1.19   | 12.8 | 7.3  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
| 110   | 2.25 | 2.6 | 6.1           | 9.3  | 7.7   | 0.83              | 1.14   | 13.2 | 8.2  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       | 3.00 | 4.4 | 10.1          | 9.6  | 7.9   | 0.82              | 1.11   | 13.4 | 8.7  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       | 1.50 | 1.2 | 2.8           | 7.8  | 6.9   | 0.88              | 1.28   | 12.2 | 6.1  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
| 120   | 2.25 | 2.6 | 5.9           | 8.3  | 7.2   | 0.86              | 1.23   | 12.5 | 6.8  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       | 3.00 | 4.3 | 10.0          | 8.6  | 7.3   | 0.85              | 1.20   | 12.7 | 7.1  | 18.0 | 0.96 | 14.7      | 107.0 | 5.5 |
|       |      |     | lation is not |      |       |                   |        |      |      |      |      |           |       |     |

Interpolation is permissible, extrapolation is not. All entering air conditions are  $80^\circ F$  DB and  $67^\circ F$  WB in cooling and  $70^\circ F$  DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL15 with ECM Motor

### 600 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| FIAT          |      | W   | PD     |      | С    | ooling - E        | T 80/67° | °F   | 23   | nance cap |      | ng - EAT |       |     |
|---------------|------|-----|--------|------|------|-------------------|----------|------|------|-----------|------|----------|-------|-----|
| °F            | GPM  | PSI | FT     | тс   | sc   | Sens/Tot<br>Ratio | kW       | HR   | EER  | нс        | kW   | HE       | LAT   | СОР |
|               | 1.88 | 0.5 | 1.2    |      |      |                   |          |      |      |           |      |          |       |     |
| 20            | 2.81 | 1.6 | 3.8    |      | Oper | ation not r       | ecomme   | nded |      |           |      |          |       |     |
|               | 3.75 | 2.7 | 6.3    |      |      |                   |          |      |      | 8.9       | 0.92 | 5.7      | 83.6  | 2.8 |
|               | 1.88 | 0.4 | 1.0    | 18.9 | 13.8 | 0.73              | 0.57     | 20.8 | 32.8 | 10.2      | 0.94 | 7.0      | 85.7  | 3.2 |
| 30            | 2.81 | 1.4 | 3.2    | 18.4 | 12.9 | 0.70              | 0.54     | 20.3 | 34.2 | 10.7      | 0.95 | 7.5      | 86.5  | 3.3 |
|               | 3.75 | 2.3 | 5.4    | 18.1 | 12.2 | 0.67              | 0.53     | 19.9 | 34.2 | 11.0      | 0.95 | 7.8      | 86.9  | 3.4 |
|               | 1.88 | 0.3 | 0.7    | 18.8 | 14.4 | 0.76              | 0.64     | 21.0 | 29.2 | 12.2      | 0.97 | 8.9      | 88.8  | 3.7 |
| 40            | 2.81 | 0.9 | 2.1    | 18.9 | 14.0 | 0.74              | 0.59     | 20.9 | 32.1 | 12.9      | 0.98 | 9.6      | 89.9  | 3.9 |
|               | 3.75 | 1.5 | 3.5    | 18.8 | 13.7 | 0.73              | 0.57     | 20.8 | 33.2 | 13.3      | 0.98 | 10.0     | 90.5  | 4.0 |
|               | 1.88 | 0.3 | 0.6    | 18.2 | 14.2 | 0.78              | 0.73     | 20.7 | 25.0 | 14.3      | 0.99 | 10.9     | 92.0  | 4.2 |
| 50            | 2.81 | 0.9 | 2.0    | 18.7 | 14.4 | 0.77              | 0.66     | 20.9 | 28.2 | 15.2      | 1.00 | 11.8     | 93.4  | 4.4 |
|               | 3.75 | 1.4 | 3.3    | 18.8 | 14.3 | 0.76              | 0.63     | 21.0 | 29.8 | 15.7      | 1.01 | 12.3     | 94.2  | 4.6 |
|               | 1.88 | 0.3 | 0.6    | 17.2 | 13.7 | 0.80              | 0.82     | 20.0 | 21.0 | 16.4      | 1.01 | 13.0     | 95.3  | 4.7 |
| 60            | 2.81 | 0.8 | 1.9    | 18.0 | 14.1 | 0.79              | 0.75     | 20.5 | 23.9 | 17.5      | 1.02 | 14.0     | 97.0  | 5.0 |
|               | 3.75 | 1.4 | 3.2    | 18.3 | 14.3 | 0.78              | 0.72     | 20.7 | 25.5 | 18.1      | 1.03 | 14.6     | 97.9  | 5.2 |
|               | 1.88 | 0.3 | 0.6    | 16.1 | 13.0 | 0.81              | 0.93     | 19.2 | 17.3 | 18.6      | 1.03 | 15.1     | 98.6  | 5.3 |
| 70            | 2.81 | 0.8 | 1.8    | 16.9 | 13.5 | 0.80              | 0.85     | 19.8 | 19.9 | 19.9      | 1.04 | 16.3     | 100.6 | 5.6 |
|               | 3.75 | 1.3 | 3.0    | 17.3 | 13.8 | 0.79              | 0.81     | 20.1 | 21.3 | 20.6      | 1.05 | 17.0     | 101.7 | 5.7 |
|               | 1.88 | 0.2 | 0.6    | 14.8 | 12.1 | 0.82              | 1.04     | 18.3 | 14.2 | 20.7      | 1.05 | 17.1     | 101.9 | 5.8 |
| 80            | 2.81 | 0.7 | 1.7    | 15.7 | 12.7 | 0.81              | 0.96     | 19.0 | 16.3 | 22.1      | 1.06 | 18.5     | 104.1 | 6.1 |
|               | 3.75 | 1.3 | 2.9    | 16.1 | 13.0 | 0.81              | 0.92     | 19.3 | 17.5 | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
|               | 4.50 | 1.1 | 2.6    | 13.5 | 11.3 | 0.84              | 1.16     | 17.4 | 11.6 | 22.8      | 1.06 | 19.2     | 105.1 | 6.3 |
| 90            | 6.75 | 2.2 | 5.1    | 14.3 | 11.8 | 0.82              | 1.08     | 18.0 | 13.2 | 24.3      | 1.07 | 20.7     | 107.5 | 6.6 |
|               | 9.00 | 3.6 | 8.3    | 14.8 | 12.1 | 0.82              | 1.04     | 18.3 | 14.2 | 25.1      | 1.08 | 21.5     | 108.7 | 6.8 |
|               | 4.50 | 1.1 | 2.5    | 12.2 | 10.5 | 0.87              | 1.28     | 16.6 | 9.5  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
| 100           | 6.75 | 2.1 | 4.9    | 13.0 | 11.0 | 0.85              | 1.21     | 17.1 | 10.7 | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
|               | 9.00 | 3.5 | 8.0    | 13.4 | 11.2 | 0.84              | 1.17     | 17.4 | 11.4 | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
|               | 4.50 | 1.0 | 2.4    | 11.1 | 10.0 | 0.91              | 1.41     | 15.9 | 7.8  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
| 110           | 6.75 | 2.0 | 4.7    | 11.7 | 10.3 | 0.88              | 1.34     | 16.3 | 8.7  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
|               | 9.00 | 3.3 | 7.7    | 12.1 | 10.5 | 0.87              | 1.30     | 16.5 | 9.3  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
|               | 4.50 | 1.0 | 2.3    | 10.2 | 9.9  | 0.97              | 1.54     | 15.4 | 6.6  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
| 120           | 6.75 | 2.0 | 4.5    | 10.6 | 9.9  | 0.93              | 1.47     | 15.6 | 7.2  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
|               | 9.00 | 3.2 | 7.4    | 10.9 | 10.0 | 0.92              | 1.43     | 15.8 | 7.6  | 22.9      | 1.06 | 19.3     | 105.3 | 6.3 |
| Internolation |      |     | 1 11 1 |      |      |                   |          |      |      |           |      |          |       |     |

Interpolation is permissible, extrapolation is not. All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL18 with ECM Motor

### 700 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| EWT         |              | W          | PD          |      | Co     | oling - EAT       | 80/67°l | =    |      |      | Heatii | ng - EAT | 70°F  |     |
|-------------|--------------|------------|-------------|------|--------|-------------------|---------|------|------|------|--------|----------|-------|-----|
| °F          | GPM          | PSI        | FT          | тс   | sc     | Sens/Tot<br>Ratio | kW      | HR   | EER  | нс   | kW     | HE       | LAT   | СОР |
|             | 2.25         | 0.8        | 1.8         |      |        |                   |         |      |      |      |        |          |       |     |
| 20          | 3.38         | 1.9        | 4.4         |      | Operat | ion not red       | commer  | nded |      |      |        |          |       |     |
|             | 4.50         | 3.3        | 7.7         |      |        |                   |         |      |      | 9.1  | 1.06   | 5.5      | 82.0  | 2.5 |
|             | 2.25         | 0.6        | 1.4         | 20.4 | 14.1   | 0.69              | 0.72    | 22.9 | 28.4 | 11.1 | 1.10   | 7.4      | 84.7  | 3.0 |
| 30          | 3.38         | 1.6        | 3.7         | 20.2 | 13.6   | 0.67              | 0.67    | 22.5 | 30.1 | 11.7 | 1.11   | 7.9      | 85.5  | 3.1 |
|             | 4.50         | 2.8        | 6.6         | 20.0 | 13.2   | 0.66              | 0.65    | 22.2 | 30.7 | 12.1 | 1.11   | 8.3      | 85.9  | 3.2 |
|             | 2.25         | 0.5        | 1.1         | 20.2 | 14.3   | 0.71              | 0.80    | 22.9 | 25.3 | 13.6 | 1.14   | 9.7      | 87.9  | 3.5 |
| 40          | 3.38         | 1.2        | 2.7         | 20.4 | 14.2   | 0.70              | 0.74    | 23.0 | 27.5 | 14.3 | 1.15   | 10.4     | 88.9  | 3.7 |
|             | 4.50         | 2.0        | 4.7         | 20.4 | 14.1   | 0.69              | 0.72    | 22.9 | 28.6 | 14.7 | 1.15   | 10.8     | 89.5  | 3.8 |
|             | 2.25         | 0.4        | 1.0         | 19.5 | 14.1   | 0.72              | 0.89    | 22.5 | 21.8 | 15.9 | 1.17   | 11.9     | 91.0  | 4.0 |
| 50          | 3.38         | 1.1        | 2.6         | 20.0 | 14.3   | 0.71              | 0.83    | 22.8 | 24.2 | 16.8 | 1.18   | 12.7     | 92.1  | 4.2 |
|             | 4.50         | 2.0        | 4.5         | 20.2 | 14.3   | 0.71              | 0.80    | 22.9 | 25.4 | 17.2 | 1.18   | 13.2     | 92.7  | 4.3 |
|             | 2.25         | 0.4        | 1.0         | 18.5 | 13.7   | 0.74              | 1.00    | 21.9 | 18.5 | 18.1 | 1.19   | 14.0     | 93.8  | 4.4 |
| 60          | 3.38         | 1.1        | 2.5         | 19.2 | 14.0   | 0.73              | 0.93    | 22.4 | 20.7 | 19.0 | 1.20   | 14.9     | 95.1  | 4.6 |
|             | 4.50         | 1.9        | 4.3         | 19.5 | 14.1   | 0.72              | 0.89    | 22.6 | 21.9 | 19.5 | 1.21   | 15.4     | 95.8  | 4.7 |
|             | 2.25         | 0.4        | 0.9         | 17.2 | 13.0   | 0.76              | 1.12    | 21.0 | 15.4 | 20.1 | 1.21   | 16.0     | 96.6  | 4.9 |
| 70          | 3.38         | 1.0        | 2.4         | 18.0 | 13.5   | 0.75              | 1.04    | 21.6 | 17.4 | 21.1 | 1.22   | 17.0     | 97.9  | 5.1 |
|             | 4.50         | 1.8        | 4.1         | 18.4 | 13.7   | 0.74              | 1.00    | 21.9 | 18.4 | 21.7 | 1.23   | 17.5     | 98.6  | 5.2 |
|             | 2.25         | 0.4        | 0.9         | 15.8 | 12.3   | 0.78              | 1.25    | 20.0 | 12.7 | 22.1 | 1.24   | 17.9     | 99.2  | 5.2 |
| 80          | 3.38         | 1.0        | 2.2         | 16.7 | 12.8   | 0.77              | 1.16    | 20.6 | 14.3 | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
|             | 4.50         | 1.7        | 4.0         | 17.1 | 13.0   | 0.76              | 1.12    | 21.0 | 15.2 | 23.8 | 1.26   | 19.5     | 101.4 | 5.6 |
|             | 2.25         | 0.4        | 0.8         | 14.3 | 11.6   | 0.81              | 1.39    | 19.0 | 10.3 | 24.0 | 1.26   | 19.7     | 101.7 | 5.6 |
| 90          | 3.38         | 0.9        | 2.1         | 15.2 | 12.0   | 0.79              | 1.30    | 19.6 | 11.7 | 25.3 | 1.28   | 20.9     | 103.3 | 5.8 |
|             | 4.50         | 1.6        | 3.8         | 15.6 | 12.3   | 0.78              | 1.26    | 19.9 | 12.4 | 25.9 | 1.29   | 21.5     | 104.2 | 5.9 |
|             | 2.25         | 0.3        | 0.8         | 12.8 | 10.9   | 0.85              | 1.54    | 18.0 | 8.3  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
| 100         | 3.38         | 0.9        | 2.1         | 13.6 | 11.3   | 0.83              | 1.45    | 18.6 | 9.4  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
|             | 4.50         | 1.6        | 3.7         | 14.1 | 11.5   | 0.82              | 1.41    | 18.9 | 10.0 | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
|             | 2.25         | 0.3        | 0.7         | 11.3 | 10.2   | 0.90              | 1.70    | 17.1 | 6.7  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
| 110         | 3.38         | 0.9        | 2.0         | 12.1 | 10.6   | 0.87              | 1.61    | 17.6 | 7.5  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
|             | 4.50         | 1.5        | 3.6         | 12.5 | 10.7   | 0.86              | 1.57    | 17.8 | 8.0  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
|             | 2.25         | 0.3        | 0.7         | 10.0 | 9.8    | 0.97              | 1.88    | 16.4 | 5.3  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
| 120         | 3.38         | 0.8        | 1.9         | 10.7 | 10.0   | 0.94              | 1.79    | 16.8 | 6.0  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
|             | 4.50         | 1.5        | 3.4         | 11.0 | 10.1   | 0.92              | 1.74    | 17.0 | 6.3  | 23.2 | 1.25   | 19.0     | 100.6 | 5.4 |
| nterpolatio | n je normies | ible ovtra | nolation is | not  |        |                   |         |      |      |      |        |          |       |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL24 with ECM Motor

### 800 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| FIATE        |      | W   | PD  |      | Cod    | oling - EAT       | 80/67°F |      |      | ance cap |      | ng - EA1 |       |     |
|--------------|------|-----|-----|------|--------|-------------------|---------|------|------|----------|------|----------|-------|-----|
| °F           | GPM  | PSI | FT  | тс   | sc     | Sens/Tot<br>Ratio | kW      | HR   | EER  | нс       | kW   | HE       | LAT   | СОР |
|              | 3.00 | 1.2 | 2.8 |      |        |                   |         |      |      |          |      |          |       |     |
| 20           | 4.50 | 2.5 | 5.9 |      | Operat | ion not rec       | ommen   | ded  |      |          |      |          |       |     |
|              | 6.00 | 4.1 | 9.6 |      |        |                   |         |      |      | 15.0     | 1.62 | 9.4      | 87.3  | 2.7 |
|              | 3.00 | 1.0 | 2.4 | 31.0 | 21.6   | 0.70              | 1.08    | 34.7 | 28.8 | 17.1     | 1.66 | 11.5     | 89.8  | 3.0 |
| 30           | 4.50 | 2.1 | 5.0 | 31.2 | 21.7   | 0.70              | 0.99    | 34.6 | 31.6 | 18.0     | 1.68 | 12.3     | 90.8  | 3.2 |
|              | 6.00 | 3.6 | 8.2 | 31.2 | 21.7   | 0.70              | 0.95    | 34.4 | 33.0 | 18.6     | 1.69 | 12.8     | 91.4  | 3.2 |
|              | 3.00 | 0.8 | 1.7 | 30.4 | 21.3   | 0.70              | 1.20    | 34.5 | 25.4 | 20.4     | 1.71 | 14.5     | 93.5  | 3.5 |
| 40           | 4.50 | 1.6 | 3.6 | 30.9 | 21.6   | 0.70              | 1.10    | 34.7 | 28.1 | 21.5     | 1.73 | 15.6     | 94.8  | 3.6 |
|              | 6.00 | 2.5 | 5.9 | 31.1 | 21.7   | 0.70              | 1.06    | 34.7 | 29.4 | 22.1     | 1.74 | 16.2     | 95.6  | 3.7 |
|              | 3.00 | 0.7 | 1.7 | 29.5 | 20.9   | 0.71              | 1.33    | 34.0 | 22.2 | 23.6     | 1.77 | 17.5     | 97.2  | 3.9 |
| 50           | 4.50 | 1.5 | 3.4 | 30.3 | 21.2   | 0.70              | 1.22    | 34.4 | 24.7 | 24.9     | 1.79 | 18.8     | 98.8  | 4.1 |
|              | 6.00 | 2.4 | 5.6 | 30.6 | 21.4   | 0.70              | 1.17    | 34.6 | 26.0 | 25.7     | 1.80 | 19.6     | 99.7  | 4.2 |
|              | 3.00 | 0.7 | 1.6 | 28.3 | 20.3   | 0.72              | 1.48    | 33.4 | 19.1 | 26.8     | 1.82 | 20.6     | 100.9 | 4.3 |
| 60           | 4.50 | 1.4 | 3.3 | 29.3 | 20.8   | 0.71              | 1.36    | 33.9 | 21.5 | 28.3     | 1.84 | 22.1     | 102.7 | 4.5 |
|              | 6.00 | 2.3 | 5.4 | 29.7 | 21.0   | 0.71              | 1.31    | 34.1 | 22.7 | 29.2     | 1.86 | 22.9     | 103.7 | 4.6 |
|              | 3.00 | 0.7 | 1.5 | 26.9 | 19.7   | 0.73              | 1.65    | 32.6 | 16.3 | 29.9     | 1.87 | 23.5     | 104.5 | 4.7 |
| 70           | 4.50 | 1.4 | 3.1 | 28.0 | 20.2   | 0.72              | 1.52    | 33.2 | 18.4 | 31.7     | 1.91 | 25.2     | 106.6 | 4.9 |
|              | 6.00 | 2.2 | 5.2 | 28.5 | 20.4   | 0.72              | 1.46    | 33.5 | 19.5 | 32.7     | 1.93 | 26.1     | 107.7 | 5.0 |
|              | 3.00 | 0.6 | 1.4 | 25.4 | 19.0   | 0.75              | 1.85    | 31.7 | 13.7 | 33.0     | 1.93 | 26.4     | 108.1 | 5.0 |
| 80           | 4.50 | 1.3 | 3.0 | 26.6 | 19.5   | 0.73              | 1.70    | 32.4 | 15.6 | 34.9     | 1.98 | 28.2     | 110.3 | 5.2 |
|              | 6.00 | 2.1 | 5.0 | 27.1 | 19.8   | 0.73              | 1.63    | 32.7 | 16.6 | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
|              | 3.00 | 0.6 | 1.4 | 23.7 | 18.2   | 0.77              | 2.08    | 30.8 | 11.4 | 36.0     | 2.01 | 29.1     | 111.5 | 5.3 |
| 90           | 4.50 | 1.2 | 2.9 | 24.9 | 18.7   | 0.75              | 1.91    | 31.5 | 13.0 | 38.1     | 2.07 | 31.0     | 113.9 | 5.4 |
|              | 6.00 | 2.1 | 4.8 | 25.5 | 19.0   | 0.74              | 1.83    | 31.8 | 13.9 | 39.2     | 2.11 | 32.0     | 115.2 | 5.4 |
|              | 3.00 | 0.6 | 1.3 | 22.0 | 17.3   | 0.79              | 2.34    | 30.0 | 9.4  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
| 100          | 4.50 | 1.2 | 2.8 | 23.2 | 17.9   | 0.77              | 2.15    | 30.6 | 10.8 | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
|              | 6.00 | 2.0 | 4.6 | 23.8 | 18.2   | 0.76              | 2.07    | 30.9 | 11.5 | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
|              | 3.00 | 0.6 | 1.3 | 20.2 | 16.5   | 0.81              | 2.64    | 29.3 | 7.7  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
| 110          | 4.50 | 1.2 | 2.7 | 21.4 | 17.1   | 0.80              | 2.43    | 29.7 | 8.8  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
|              | 6.00 | 1.9 | 4.5 | 22.0 | 17.4   | 0.79              | 2.33    | 30.0 | 9.4  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
|              | 3.00 | 0.5 | 1.2 | 18.5 | 15.6   | 0.84              | 2.99    | 28.7 | 6.2  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
| 120          | 4.50 | 1.1 | 2.6 | 19.6 | 16.2   | 0.82              | 2.76    | 29.0 | 7.1  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
|              | 6.00 | 1.9 | 4.4 | 20.2 | 16.5   | 0.81              | 2.65    | 29.3 | 7.6  | 36.0     | 2.01 | 29.1     | 111.6 | 5.3 |
| nternolation |      |     |     |      |        |                   |         |      |      |          |      |          |       |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL30 with ECM Motor

### 1,000 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| EWT |      | W   | PD   |      | C     | ooling - EA       | T 80/67 | °F    |      |      | Heati | ng - EA | Г 70°F |     |
|-----|------|-----|------|------|-------|-------------------|---------|-------|------|------|-------|---------|--------|-----|
| °F  | GPM  | PSI | FT   | тс   | sc    | Sens/Tot<br>Ratio | kW      | HR    | EER  | нс   | kW    | HE      | LAT    | СОР |
|     | 3.75 | 1.5 | 3.5  |      |       |                   |         |       |      |      |       |         |        |     |
| 20  | 5.63 | 3.3 | 7.5  |      | Opera | ation not re      | ecomme  | ended |      |      |       |         |        |     |
|     | 7.50 | 5.4 | 12.6 |      |       |                   |         |       |      | 17.2 | 1.80  | 11.1    | 85.9   | 2.8 |
|     | 3.75 | 1.3 | 3.1  | 33.7 | 23.4  | 0.70              | 1.20    | 37.8  | 28.0 | 19.5 | 1.82  | 13.3    | 88.0   | 3.1 |
| 30  | 5.63 | 2.9 | 6.6  | 33.3 | 22.8  | 0.69              | 1.13    | 37.2  | 29.5 | 20.3 | 1.82  | 14.1    | 88.8   | 3.3 |
|     | 7.50 | 5.0 | 11.6 | 33.0 | 22.4  | 0.68              | 1.09    | 36.7  | 30.2 | 20.8 | 1.83  | 14.6    | 89.2   | 3.3 |
|     | 3.75 | 1.0 | 2.3  | 33.6 | 23.7  | 0.71              | 1.32    | 38.1  | 25.4 | 22.7 | 1.84  | 16.4    | 91.0   | 3.6 |
| 40  | 5.63 | 2.1 | 4.9  | 33.7 | 23.6  | 0.70              | 1.24    | 38.0  | 27.2 | 23.8 | 1.85  | 17.5    | 92.0   | 3.8 |
|     | 7.50 | 3.5 | 8.0  | 33.7 | 23.4  | 0.70              | 1.20    | 37.8  | 28.1 | 24.4 | 1.86  | 18.0    | 92.5   | 3.8 |
|     | 3.75 | 1.0 | 2.2  | 32.9 | 23.4  | 0.71              | 1.46    | 37.9  | 22.5 | 25.9 | 1.88  | 19.5    | 94.0   | 4.0 |
| 50  | 5.63 | 2.0 | 4.7  | 33.4 | 23.7  | 0.71              | 1.36    | 38.1  | 24.5 | 27.2 | 1.89  | 20.7    | 95.1   | 4.2 |
|     | 7.50 | 3.4 | 7.9  | 33.6 | 23.7  | 0.71              | 1.32    | 38.1  | 25.5 | 27.8 | 1.90  | 21.3    | 95.7   | 4.3 |
|     | 3.75 | 0.9 | 2.1  | 31.7 | 22.8  | 0.72              | 1.61    | 37.2  | 19.6 | 29.1 | 1.92  | 22.5    | 96.9   | 4.4 |
| 60  | 5.63 | 2.0 | 4.5  | 32.5 | 23.3  | 0.72              | 1.51    | 37.7  | 21.6 | 30.5 | 1.94  | 23.9    | 98.2   | 4.6 |
|     | 7.50 | 3.3 | 7.7  | 32.9 | 23.5  | 0.71              | 1.46    | 37.9  | 22.6 | 31.3 | 1.96  | 24.6    | 98.9   | 4.7 |
|     | 3.75 | 0.9 | 2.0  | 30.1 | 21.9  | 0.73              | 1.79    | 36.2  | 16.8 | 32.2 | 1.98  | 25.5    | 99.8   | 4.8 |
| 70  | 5.63 | 1.9 | 4.4  | 31.2 | 22.5  | 0.72              | 1.67    | 36.9  | 18.7 | 33.8 | 2.01  | 27.0    | 101.2  | 4.9 |
|     | 7.50 | 3.2 | 7.5  | 31.7 | 22.8  | 0.72              | 1.61    | 37.2  | 19.7 | 34.7 | 2.02  | 27.8    | 102.0  | 5.0 |
|     | 3.75 | 0.9 | 2.0  | 28.3 | 20.9  | 0.74              | 2.00    | 35.1  | 14.2 | 35.4 | 2.04  | 28.4    | 102.7  | 5.1 |
| 80  | 5.63 | 1.8 | 4.2  | 29.5 | 21.6  | 0.73              | 1.86    | 35.9  | 15.9 | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     | 7.50 | 3.2 | 7.3  | 30.1 | 21.9  | 0.73              | 1.79    | 36.2  | 16.8 | 38.1 | 2.10  | 30.9    | 105.2  | 5.3 |
|     | 3.75 | 0.8 | 1.9  | 26.3 | 19.9  | 0.76              | 2.23    | 33.9  | 11.8 | 38.5 | 2.11  | 31.3    | 105.5  | 5.3 |
| 90  | 5.63 | 1.8 | 4.1  | 27.6 | 20.5  | 0.75              | 2.08    | 34.6  | 13.3 | 40.4 | 2.17  | 33.0    | 107.3  | 5.5 |
|     | 7.50 | 3.1 | 7.1  | 28.2 | 20.9  | 0.74              | 2.01    | 35.0  | 14.1 | 41.4 | 2.20  | 33.9    | 108.3  | 5.5 |
|     | 3.75 | 0.8 | 1.8  | 24.1 | 18.9  | 0.78              | 2.50    | 32.6  | 9.6  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
| 100 | 5.63 | 1.7 | 3.9  | 25.4 | 19.5  | 0.77              | 2.33    | 33.4  | 10.9 | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     | 7.50 | 3.0 | 6.8  | 26.1 | 19.8  | 0.76              | 2.25    | 33.8  | 11.6 | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     | 3.75 | 0.8 | 1.8  | 21.9 | 17.9  | 0.82              | 2.81    | 31.5  | 7.8  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
| 110 | 5.63 | 1.7 | 3.8  | 23.2 | 18.5  | 0.80              | 2.62    | 32.2  | 8.8  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     | 7.50 | 2.8 | 6.6  | 23.9 | 18.8  | 0.79              | 2.53    | 32.5  | 9.4  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     | 3.75 | 0.7 | 1.7  | 19.8 | 17.1  | 0.87              | 3.17    | 30.6  | 6.2  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
| 120 | 5.63 | 1.6 | 3.7  | 21.0 | 17.6  | 0.84              | 2.96    | 31.1  | 7.1  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     | 7.50 | 2.7 | 6.3  | 21.6 | 17.8  | 0.83              | 2.86    | 31.4  | 7.5  | 37.1 | 2.08  | 30.0    | 104.3  | 5.2 |
|     |      |     | o.o  |      |       |                   |         |       |      |      |       |         |        |     |

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

### Performance Data - TSL36 with ECM Motor

### 1,200 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

| EVACE |      | W   | PD             |      | Co    | ooling - EA       | T 80/67° | F    |      | rmance ca |      | ng - EAT |       |     |
|-------|------|-----|----------------|------|-------|-------------------|----------|------|------|-----------|------|----------|-------|-----|
| °F    | GPM  | PSI | FT             | тс   | sc    | Sens/Tot<br>Ratio | kW       | HR   | EER  | нс        | kW   | HE       | LAT   | СОР |
|       | 4.50 | 2.2 | 5.1            |      |       |                   |          |      |      |           |      |          |       |     |
| 20    | 6.75 | 4.5 | 10.3           |      | Opera | ition not re      | comme    | nded |      |           |      |          |       |     |
|       | 9.00 | 7.2 | 16.7           |      |       |                   |          |      |      | 22.1      | 2.19 | 14.6     | 87.0  | 3.0 |
|       | 4.50 | 1.8 | 4.2            | 41.0 | 28.2  | 0.69              | 1.58     | 46.4 | 25.9 | 24.4      | 2.22 | 16.9     | 88.8  | 3.2 |
| 30    | 6.75 | 3.6 | 8.4            | 40.1 | 27.4  | 0.68              | 1.48     | 45.1 | 27.0 | 25.4      | 2.24 | 17.8     | 89.6  | 3.3 |
|       | 9.00 | 5.9 | 13.6           | 39.4 | 26.8  | 0.68              | 1.44     | 44.3 | 27.4 | 25.9      | 2.25 | 18.3     | 90.0  | 3.4 |
|       | 4.50 | 1.5 | 3.4            | 41.2 | 28.6  | 0.69              | 1.73     | 47.1 | 23.8 | 28.2      | 2.28 | 20.4     | 91.7  | 3.6 |
| 40    | 6.75 | 2.9 | 6.8            | 41.2 | 28.4  | 0.69              | 1.62     | 46.7 | 25.3 | 29.5      | 2.30 | 21.6     | 92.7  | 3.7 |
|       | 9.00 | 4.8 | 11.0           | 40.9 | 28.1  | 0.69              | 1.57     | 46.3 | 26.0 | 30.2      | 2.32 | 22.3     | 93.2  | 3.8 |
|       | 4.50 | 1.4 | 3.2            | 40.4 | 28.4  | 0.70              | 1.90     | 46.9 | 21.2 | 32.2      | 2.35 | 24.1     | 94.8  | 4.0 |
| 50    | 6.75 | 2.8 | 6.4            | 41.0 | 28.6  | 0.70              | 1.78     | 47.1 | 23.1 | 33.7      | 2.38 | 25.6     | 95.9  | 4.2 |
|       | 9.00 | 4.5 | 10.4           | 41.2 | 28.6  | 0.69              | 1.72     | 47.1 | 23.9 | 34.5      | 2.39 | 26.4     | 96.6  | 4.2 |
|       | 4.50 | 1.3 | 3.1            | 38.9 | 27.7  | 0.71              | 2.09     | 46.0 | 18.6 | 36.1      | 2.42 | 27.9     | 97.8  | 4.4 |
| 60    | 6.75 | 2.6 | 6.1            | 40.0 | 28.2  | 0.71              | 1.96     | 46.7 | 20.5 | 37.9      | 2.45 | 29.5     | 99.1  | 4.5 |
|       | 9.00 | 4.3 | 9.9            | 40.4 | 28.4  | 0.70              | 1.89     | 46.9 | 21.4 | 38.8      | 2.47 | 30.4     | 99.9  | 4.6 |
|       | 4.50 | 1.3 | 2.9            | 36.9 | 26.7  | 0.72              | 2.32     | 44.8 | 15.9 | 40.0      | 2.49 | 31.5     | 100.8 | 4.7 |
| 70    | 6.75 | 2.5 | 5.8            | 38.3 | 27.4  | 0.72              | 2.16     | 45.7 | 17.7 | 41.8      | 2.53 | 33.2     | 102.2 | 4.8 |
|       | 9.00 | 4.0 | 9.3            | 38.9 | 27.7  | 0.71              | 2.09     | 46.1 | 18.7 | 42.7      | 2.55 | 34.0     | 102.9 | 4.9 |
|       | 4.50 | 1.2 | 2.7            | 34.5 | 25.4  | 0.74              | 2.58     | 43.3 | 13.4 | 43.5      | 2.56 | 34.8     | 103.5 | 5.0 |
| 80    | 6.75 | 2.3 | 5.4            | 36.1 | 26.3  | 0.73              | 2.40     | 44.3 | 15.0 | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
|       | 9.00 | 3.8 | 8.8            | 36.9 | 26.7  | 0.72              | 2.31     | 44.8 | 15.9 | 46.1      | 2.62 | 37.1     | 105.5 | 5.2 |
|       | 4.50 | 1.1 | 2.6            | 32.0 | 24.0  | 0.75              | 2.89     | 41.9 | 11.1 | 46.5      | 2.63 | 37.6     | 105.8 | 5.2 |
| 90    | 6.75 | 2.2 | 5.1            | 33.6 | 24.9  | 0.74              | 2.68     | 42.8 | 12.5 | 47.9      | 2.66 | 38.9     | 106.9 | 5.3 |
|       | 9.00 | 3.6 | 8.3            | 34.5 | 25.4  | 0.74              | 2.59     | 43.3 | 13.3 | 48.5      | 2.67 | 39.4     | 107.4 | 5.3 |
|       | 4.50 | 1.1 | 2.5            | 29.5 | 22.6  | 0.77              | 3.25     | 40.6 | 9.1  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
| 100   | 6.75 | 2.1 | 4.9            | 31.0 | 23.5  | 0.76              | 3.02     | 41.3 | 10.3 | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
|       | 9.00 | 3.5 | 8.0            | 31.9 | 23.9  | 0.75              | 2.91     | 41.8 | 11.0 | 45.2      | 2.60 | 36.4     | 102.8 | 5.1 |
|       | 4.50 | 1.0 | 2.4            | 27.0 | 21.2  | 0.78              | 3.69     | 39.6 | 7.3  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
| 110   | 6.75 | 2.0 | 4.7            | 28.5 | 22.0  | 0.77              | 3.42     | 40.1 | 8.3  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
|       | 9.00 | 3.3 | 7.7            | 29.2 | 22.5  | 0.77              | 3.29     | 40.5 | 8.9  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
|       | 4.50 | 1.0 | 2.3            | 24.9 | 20.0  | 0.80              | 4.20     | 39.3 | 5.9  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
| 120   | 6.75 | 2.0 | 4.5            | 26.1 | 20.7  | 0.79              | 3.89     | 39.4 | 6.7  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
|       | 9.00 | 3.2 | 7.4            | 26.8 | 21.1  | 0.79              | 3.74     | 39.5 | 7.2  | 45.2      | 2.60 | 36.4     | 104.8 | 5.1 |
|       |      |     | nolation is no |      |       |                   |          |      |      |           |      |          |       |     |

Interpolation is permissible, extrapolation is not. All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units.

See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of ClimateMaster Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70°F

## Performance Data – TSL09 Hybrid

### **400 CFM Nominal Airflow**

Performance capacities shown in thousands of Btuh

|          | Hydronic Heating Entering Air 70°F DB |                |               |                    |      |          |  |  |  |  |  |  |
|----------|---------------------------------------|----------------|---------------|--------------------|------|----------|--|--|--|--|--|--|
|          | ŀ                                     | iyaronic Heati | ng Entering A |                    |      |          |  |  |  |  |  |  |
| EWT (°F) | GPM                                   | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.4           | 5000               | 0.04 | 81.5     |  |  |  |  |  |  |
| 90       | 1.69                                  | 2.4            | 5.4           | 5400               | 0.04 | 82.6     |  |  |  |  |  |  |
|          | 2.25                                  | 4.1            | 9.5           | 5900               | 0.05 | 83.6     |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.4           | 6200               | 0.04 | 84.4     |  |  |  |  |  |  |
| 95       | 1.69                                  | 2.3            | 5.4           | 6700               | 0.04 | 85.7     |  |  |  |  |  |  |
|          | 2.25                                  | 4.1            | 9.5           | 7300               | 0.05 | 86.9     |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.3           | 7400               | 0.04 | 87.3     |  |  |  |  |  |  |
| 100      | 1.69                                  | 2.3            | 5.4           | 8100               | 0.04 | 88.8     |  |  |  |  |  |  |
|          | 2.25                                  | 4.1            | 9.4           | 8800               | 0.05 | 90.3     |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.3           | 8700               | 0.04 | 90.1     |  |  |  |  |  |  |
| 105      | 1.69                                  | 2.3            | 5.3           | 9400               | 0.04 | 91.9     |  |  |  |  |  |  |
|          | 2.25                                  | 4.1            | 9.4           | 10200              | 0.05 | 93.6     |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.3           | 9900               | 0.04 | 93.0     |  |  |  |  |  |  |
| 110      | 1.69                                  | 2.3            | 5.3           | 10800              | 0.05 | 95.0     |  |  |  |  |  |  |
|          | 2.25                                  | 4.0            | 9.3           | 11700              | 0.05 | 96.9     |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.3           | 11100              | 0.04 | 95.8     |  |  |  |  |  |  |
| 115      | 1.69                                  | 2.3            | 5.3           | 12100              | 0.05 | 98.0     |  |  |  |  |  |  |
|          | 2.25                                  | 4.0            | 9.3           | 13100              | 0.05 | 100.3    |  |  |  |  |  |  |
|          | 1.13                                  | 0.6            | 1.3           | 12300              | 0.04 | 98.7     |  |  |  |  |  |  |
| 120      | 1.69                                  | 2.3            | 5.3           | 13400              | 0.05 | 101.1    |  |  |  |  |  |  |
|          | 2.25                                  | 4.0            | 9.3           | 14600              | 0.05 | 103.6    |  |  |  |  |  |  |

## Performance Data – TSL12 Hybrid

### **450 CFM Nominal Airflow**

Performance capacities shown in thousands of Btuh

|          | Performance capacities shown in thousands of Btuh  Hydronic Heating Entering Air 70°F DB |                |               |                    |      |          |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------|----------------|---------------|--------------------|------|----------|--|--|--|--|--|
|          | ŀ                                                                                        | lydronic Heati | ng Entering A |                    |      |          |  |  |  |  |  |
| EWT (°F) | GPM                                                                                      | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |  |  |
|          | 1.50                                                                                     | 1.8            | 4.1           | 5600               | 0.06 | 81.7     |  |  |  |  |  |
| 90       | 2.25                                                                                     | 4.1            | 9.5           | 6300               | 0.07 | 83.1     |  |  |  |  |  |
|          | 3.00                                                                                     | 7.5            | 17.4          | 6600               | 0.09 | 83.7     |  |  |  |  |  |
|          | 1.50                                                                                     | 1.8            | 4.0           | 7000               | 0.06 | 84.5     |  |  |  |  |  |
| 95       | 2.25                                                                                     | 4.1            | 9.5           | 7900               | 0.07 | 86.3     |  |  |  |  |  |
|          | 3.00                                                                                     | 7.5            | 17.3          | 8200               | 0.09 | 87.0     |  |  |  |  |  |
|          | 1.50                                                                                     | 1.7            | 4.0           | 8400               | 0.06 | 87.4     |  |  |  |  |  |
| 100      | 2.25                                                                                     | 4.1            | 9.4           | 9400               | 0.07 | 89.5     |  |  |  |  |  |
|          | 3.00                                                                                     | 7.5            | 17.2          | 9800               | 0.09 | 90.3     |  |  |  |  |  |
|          | 1.50                                                                                     | 1.7            | 4.0           | 9800               | 0.06 | 90.2     |  |  |  |  |  |
| 105      | 2.25                                                                                     | 4.1            | 9.4           | 11000              | 0.07 | 92.6     |  |  |  |  |  |
|          | 3.00                                                                                     | 7.4            | 17.1          | 11500              | 0.09 | 93.6     |  |  |  |  |  |
|          | 1.50                                                                                     | 1.7            | 4.0           | 11200              | 0.06 | 93.1     |  |  |  |  |  |
| 110      | 2.25                                                                                     | 4.1            | 9.4           | 12600              | 0.07 | 95.9     |  |  |  |  |  |
|          | 3.00                                                                                     | 7.4            | 17.1          | 13100              | 0.09 | 96.9     |  |  |  |  |  |
|          | 1.50                                                                                     | 1.7            | 4.0           | 12600              | 0.06 | 96.0     |  |  |  |  |  |
| 115      | 2.25                                                                                     | 4.0            | 9.3           | 14100              | 0.07 | 99.1     |  |  |  |  |  |
|          | 3.00                                                                                     | 7.4            | 17.0          | 14700              | 0.09 | 100.3    |  |  |  |  |  |
|          | 1.50                                                                                     | 1.7            | 4.0           | 14000              | 0.06 | 98.8     |  |  |  |  |  |
| 120      | 2.25                                                                                     | 4.0            | 9.3           | 15700              | 0.07 | 102.3    |  |  |  |  |  |
|          | 3.00                                                                                     | 7.3            | 17.0          | 16300              | 0.09 | 103.6    |  |  |  |  |  |

## Performance Data – TSL15 Hybrid

### 600 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

|          | Hydronic Heating Entering Air 70°F DB |                |               |                    |      |          |  |  |  |  |  |  |
|----------|---------------------------------------|----------------|---------------|--------------------|------|----------|--|--|--|--|--|--|
|          |                                       | lydronic Heati | ng Entering A |                    |      |          |  |  |  |  |  |  |
| EWT (°F) | GPM                                   | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |  |  |  |
|          | 1.88                                  | 0.3            | 0.6           | 7900               | 0.06 | 82.2     |  |  |  |  |  |  |
| 90       | 2.81                                  | 2.1            | 4.9           | 8300               | 0.07 | 82.8     |  |  |  |  |  |  |
|          | 3.75                                  | 4.0            | 9.1           | 8600               | 0.08 | 83.3     |  |  |  |  |  |  |
|          | 1.88                                  | 0.3            | 0.6           | 9800               | 0.06 | 85.1     |  |  |  |  |  |  |
| 95       | 2.81                                  | 2.1            | 4.9           | 10300              | 0.07 | 85.9     |  |  |  |  |  |  |
|          | 3.75                                  | 4.0            | 9.1           | 10700              | 0.08 | 86.6     |  |  |  |  |  |  |
|          | 1.88                                  | 0.3            | 0.6           | 11700              | 0.06 | 88.1     |  |  |  |  |  |  |
| 100      | 2.81                                  | 2.1            | 4.8           | 12300              | 0.07 | 89.0     |  |  |  |  |  |  |
|          | 3.75                                  | 3.9            | 9.1           | 12900              | 0.08 | 89.8     |  |  |  |  |  |  |
|          | 1.88                                  | 0.2            | 0.6           | 13600              | 0.06 | 91.0     |  |  |  |  |  |  |
| 105      | 2.81                                  | 2.1            | 4.8           | 14300              | 0.07 | 92.1     |  |  |  |  |  |  |
|          | 3.75                                  | 3.9            | 9.1           | 15000              | 0.08 | 93.1     |  |  |  |  |  |  |
|          | 1.88                                  | 0.2            | 0.5           | 15600              | 0.06 | 94.1     |  |  |  |  |  |  |
| 110      | 2.81                                  | 2.1            | 4.8           | 16400              | 0.07 | 95.2     |  |  |  |  |  |  |
|          | 3.75                                  | 3.9            | 9.1           | 17100              | 0.09 | 96.4     |  |  |  |  |  |  |
|          | 1.88                                  | 0.2            | 0.5           | 17600              | 0.06 | 97.1     |  |  |  |  |  |  |
| 115      | 2.81                                  | 2.1            | 4.7           | 18400              | 0.07 | 98.4     |  |  |  |  |  |  |
|          | 3.75                                  | 3.9            | 9.0           | 19300              | 0.09 | 99.6     |  |  |  |  |  |  |
|          | 1.88                                  | 0.2            | 0.5           | 19600              | 0.06 | 100.1    |  |  |  |  |  |  |
| 120      | 2.81                                  | 2.0            | 4.7           | 20500              | 0.08 | 101.5    |  |  |  |  |  |  |
|          | 3.75                                  | 3.9            | 9.0           | 21400              | 0.09 | 102.9    |  |  |  |  |  |  |

## Performance Data – TSL18 Hybrid

### 700 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

|          | Hydronic Heating Entering Air 70°F DB |                |               |                    |      |          |  |  |  |  |  |  |
|----------|---------------------------------------|----------------|---------------|--------------------|------|----------|--|--|--|--|--|--|
|          | H                                     | lydronic Heati | ng Entering A |                    |      |          |  |  |  |  |  |  |
| EWT (°F) | GPM                                   | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |  |  |  |
|          | 2.25                                  | 1.0            | 2.3           | 8900               | 0.11 | 81.8     |  |  |  |  |  |  |
| 90       | 3.38                                  | 3.2            | 7.5           | 9600               | 0.13 | 82.6     |  |  |  |  |  |  |
|          | 4.50                                  | 6.2            | 14.3          | 9900               | 0.16 | 83.2     |  |  |  |  |  |  |
|          | 2.25                                  | 1.0            | 2.3           | 11100              | 0.12 | 84.7     |  |  |  |  |  |  |
| 95       | 3.38                                  | 3.2            | 7.4           | 11900              | 0.13 | 85.7     |  |  |  |  |  |  |
|          | 4.50                                  | 6.2            | 14.3          | 12400              | 0.16 | 86.4     |  |  |  |  |  |  |
|          | 2.25                                  | 1.0            | 2.3           | 13300              | 0.12 | 87.5     |  |  |  |  |  |  |
| 100      | 3.38                                  | 3.2            | 7.4           | 14200              | 0.14 | 88.8     |  |  |  |  |  |  |
|          | 4.50                                  | 6.1            | 14.2          | 14800              | 0.16 | 89.6     |  |  |  |  |  |  |
|          | 2.25                                  | 1.0            | 2.2           | 15500              | 0.12 | 90.4     |  |  |  |  |  |  |
| 105      | 3.38                                  | 3.2            | 7.4           | 16600              | 0.14 | 91.9     |  |  |  |  |  |  |
|          | 4.50                                  | 6.1            | 14.2          | 17300              | 0.17 | 92.8     |  |  |  |  |  |  |
|          | 2.25                                  | 1.0            | 2.2           | 17700              | 0.13 | 93.3     |  |  |  |  |  |  |
| 110      | 3.38                                  | 3.2            | 7.4           | 19000              | 0.14 | 95.0     |  |  |  |  |  |  |
|          | 4.50                                  | 6.1            | 14.1          | 19700              | 0.17 | 96.1     |  |  |  |  |  |  |
|          | 2.25                                  | 0.9            | 2.2           | 19900              | 0.13 | 96.3     |  |  |  |  |  |  |
| 115      | 3.38                                  | 3.2            | 7.3           | 21300              | 0.15 | 98.1     |  |  |  |  |  |  |
|          | 4.50                                  | 6.1            | 14.0          | 22200              | 0.17 | 99.3     |  |  |  |  |  |  |
|          | 2.25                                  | 0.9            | 2.2           | 22100              | 0.13 | 99.2     |  |  |  |  |  |  |
| 120      | 3.38                                  | 3.2            | 7.3           | 23700              | 0.15 | 101.3    |  |  |  |  |  |  |
|          | 4.50                                  | 6.0            | 13.9          | 24700              | 0.18 | 102.5    |  |  |  |  |  |  |

## Performance Data – TSL24 Hybrid

### 800 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

|          | Hydronic Heating Entering Air 70°F DB |                |               |                    |      |          |  |  |  |  |  |  |
|----------|---------------------------------------|----------------|---------------|--------------------|------|----------|--|--|--|--|--|--|
|          | ŀ                                     | iyaronic Heati | ng Entering A |                    |      |          |  |  |  |  |  |  |
| EWT (°F) | GPM                                   | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.8           | 11100              | 0.10 | 83.0     |  |  |  |  |  |  |
| 90       | 4.50                                  | 3.0            | 6.9           | 12200              | 0.12 | 84.3     |  |  |  |  |  |  |
|          | 6.00                                  | 5.4            | 12.4          | 13000              | 0.14 | 85.2     |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.8           | 13800              | 0.10 | 86.2     |  |  |  |  |  |  |
| 95       | 4.50                                  | 3.0            | 6.9           | 15200              | 0.12 | 87.8     |  |  |  |  |  |  |
|          | 6.00                                  | 5.3            | 12.3          | 16200              | 0.15 | 88.9     |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.8           | 16500              | 0.10 | 89.4     |  |  |  |  |  |  |
| 100      | 4.50                                  | 3.0            | 6.9           | 18200              | 0.12 | 91.3     |  |  |  |  |  |  |
|          | 6.00                                  | 5.3            | 12.3          | 19400              | 0.15 | 92.7     |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.7           | 19200              | 0.11 | 92.6     |  |  |  |  |  |  |
| 105      | 4.50                                  | 3.0            | 6.9           | 21200              | 0.12 | 94.8     |  |  |  |  |  |  |
|          | 6.00                                  | 5.3            | 12.2          | 22600              | 0.15 | 96.4     |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.7           | 22000              | 0.11 | 95.8     |  |  |  |  |  |  |
| 110      | 4.50                                  | 3.0            | 6.8           | 24200              | 0.12 | 98.3     |  |  |  |  |  |  |
|          | 6.00                                  | 5.3            | 12.2          | 25900              | 0.15 | 100.1    |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.7           | 24700              | 0.11 | 99.0     |  |  |  |  |  |  |
| 115      | 4.50                                  | 3.0            | 6.8           | 27200              | 0.13 | 101.8    |  |  |  |  |  |  |
|          | 6.00                                  | 5.3            | 12.2          | 29000              | 0.15 | 103.8    |  |  |  |  |  |  |
|          | 3.00                                  | 1.2            | 2.7           | 27500              | 0.11 | 102.2    |  |  |  |  |  |  |
| 120      | 4.50                                  | 3.0            | 6.8           | 30300              | 0.13 | 105.3    |  |  |  |  |  |  |
|          | 6.00                                  | 5.3            | 12.1          | 32200              | 0.16 | 107.5    |  |  |  |  |  |  |

## Performance Data – TSL30 Hybrid

### 1,000 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

|          | Hydronic Heating Entering Air 70°F DB |                |               |                    |      |          |  |  |  |  |
|----------|---------------------------------------|----------------|---------------|--------------------|------|----------|--|--|--|--|
|          | ŀ                                     | lydronic Heati | ng Entering A |                    |      | ı        |  |  |  |  |
| EWT (°F) | GPM                                   | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 13500              | 0.17 | 82.5     |  |  |  |  |
| 90       | 5.63                                  | 4.5            | 10.4          | 15300              | 0.19 | 84.2     |  |  |  |  |
|          | 7.50                                  | 8.9            | 20.5          | 15700              | 0.26 | 85.5     |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 16800              | 0.17 | 85.5     |  |  |  |  |
| 95       | 5.63                                  | 4.5            | 10.3          | 19100              | 0.20 | 87.7     |  |  |  |  |
|          | 7.50                                  | 8.8            | 20.4          | 19600              | 0.27 | 88.1     |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 20100              | 0.18 | 88.6     |  |  |  |  |
| 100      | 5.63                                  | 4.5            | 10.3          | 23000              | 0.20 | 91.2     |  |  |  |  |
|          | 7.50                                  | 8.8            | 20.3          | 23500              | 0.27 | 91.7     |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 23400              | 0.18 | 91.7     |  |  |  |  |
| 105      | 5.63                                  | 4.4            | 10.3          | 26800              | 0.21 | 94.7     |  |  |  |  |
|          | 7.50                                  | 8.7            | 20.2          | 27400              | 0.28 | 95.3     |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 26700              | 0.19 | 94.7     |  |  |  |  |
| 110      | 5.63                                  | 4.4            | 10.2          | 30600              | 0.21 | 98.2     |  |  |  |  |
|          | 7.50                                  | 8.7            | 20.1          | 31300              | 0.28 | 98.8     |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 30000              | 0.19 | 97.8     |  |  |  |  |
| 115      | 5.63                                  | 4.4            | 10.2          | 34300              | 0.22 | 101.7    |  |  |  |  |
|          | 7.50                                  | 8.7            | 20.0          | 35100              | 0.28 | 102.4    |  |  |  |  |
|          | 3.75                                  | 2.1            | 4.8           | 33400              | 0.19 | 100.9    |  |  |  |  |
| 120      | 5.63                                  | 4.4            | 10.2          | 38100              | 0.22 | 105.2    |  |  |  |  |
|          | 7.50                                  | 8.6            | 19.9          | 39000              | 0.29 | 105.9    |  |  |  |  |

## Performance Data – TSL36 Hybrid

### 1,200 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

| Hydronic Heating Entering Air 70°F DB |      |                |               |                    |      |          |  |  |  |
|---------------------------------------|------|----------------|---------------|--------------------|------|----------|--|--|--|
|                                       | F    | lydronic Heati | ng Entering A | Air 70°F DB        |      |          |  |  |  |
| EWT (°F)                              | GPM  | WPD (PSI)      | WPD (FT)      | Capacity<br>(BTUH) | kW   | LAT (°F) |  |  |  |
|                                       | 4.50 | 3.0            | 6.9           | 16600              | 0.26 | 82.9     |  |  |  |
| 90                                    | 6.75 | 7.1            | 16.4          | 18400              | 0.31 | 84.2     |  |  |  |
|                                       | 9.00 | 12.4           | 28.6          | 19200              | 0.40 | 84.7     |  |  |  |
|                                       | 4.50 | 3.0            | 6.9           | 20700              | 0.26 | 85.9     |  |  |  |
| 95                                    | 6.75 | 7.1            | 16.3          | 23000              | 0.32 | 87.7     |  |  |  |
|                                       | 9.00 | 12.3           | 28.4          | 23900              | 0.40 | 88.3     |  |  |  |
|                                       | 4.50 | 3.0            | 6.9           | 24800              | 0.27 | 89.0     |  |  |  |
| 100                                   | 6.75 | 7.0            | 16.3          | 27500              | 0.33 | 91.1     |  |  |  |
|                                       | 9.00 | 12.2           | 28.3          | 28500              | 0.41 | 91.9     |  |  |  |
|                                       | 4.50 | 3.0            | 6.8           | 28800              | 0.27 | 92.1     |  |  |  |
| 105                                   | 6.75 | 7.0            | 16.2          | 32000              | 0.33 | 94.6     |  |  |  |
|                                       | 9.00 | 12.2           | 28.1          | 33200              | 0.42 | 95.5     |  |  |  |
|                                       | 4.50 | 2.9            | 6.8           | 32800              | 0.28 | 95.2     |  |  |  |
| 110                                   | 6.75 | 7.0            | 16.1          | 36500              | 0.34 | 98.0     |  |  |  |
|                                       | 9.00 | 12.1           | 28.0          | 37800              | 0.42 | 99.0     |  |  |  |
|                                       | 4.50 | 2.9            | 6.8           | 36800              | 0.28 | 98.3     |  |  |  |
| 115                                   | 6.75 | 6.9            | 16.0          | 40900              | 0.34 | 101.4    |  |  |  |
|                                       | 9.00 | 12.0           | 27.8          | 42400              | 0.43 | 102.5    |  |  |  |
|                                       | 4.50 | 2.9            | 6.7           | 40900              | 0.29 | 101.3    |  |  |  |
| 120                                   | 6.75 | 6.9            | 15.9          | 45400              | 0.35 | 104.8    |  |  |  |
|                                       | 9.00 | 11.9           | 27.6          | 47100              | 0.43 | 106.0    |  |  |  |

## Performance Data - Correction Tables

### **Airflow Correction Table**

| Airflow                            |                   | Coo                  | ling  |                      |                     | Heating |                       |
|------------------------------------|-------------------|----------------------|-------|----------------------|---------------------|---------|-----------------------|
| % of<br>Nominal<br>(Rated)<br>SCFM | Total<br>Capacity | Sensible<br>Capacity | Power | Heat of<br>Rejection | Heating<br>Capacity | Power   | Heat of<br>Extraction |
| 70                                 | 0.921             | 0.8                  | 0.969 | 0.943                | 0.942               | 1.077   | 0.934                 |
| 75                                 | 0.934             | 0.833                | 0.974 | 0.952                | 0.952               | 1.062   | 0.947                 |
| 80                                 | 0.946             | 0.866                | 0.979 | 0.961                | 0.961               | 1.048   | 0.958                 |
| 85                                 | 0.958             | 0.899                | 0.985 | 0.97                 | 0.971               | 1.035   | 0.969                 |
| 90                                 | 0.971             | 0.932                | 0.99  | 0.979                | 0.980               | 1.023   | 0.979                 |
| 95                                 | 0.985             | 0.966                | 0.995 | 0.989                | 0.990               | 1.011   | 0.989                 |
| 100                                | 1.000             | 1.000                | 1.000 | 1.000                | 1.000               | 1.000   | 1.000                 |
| 105                                | 1.017             | 1.035                | 1.005 | 1.013                | 1.010               | 0.989   | 1.011                 |

### **Entering Air Correction Table**

|                      | Hea                 | ting  |                    |
|----------------------|---------------------|-------|--------------------|
| Entering<br>Air DB°F | Heating<br>Capacity | Power | Heat of Extraction |
| 45                   | 1.107               | 0.768 | 1.181              |
| 50                   | 1.085               | 0.814 | 1.143              |
| 55                   | 1.064               | 0.860 | 1.108              |
| 60                   | 1.043               | 0.906 | 1.072              |
| 65                   | 1.022               | 0.952 | 1.036              |
| 68                   | 1.009               | 0.981 | 1.015              |
| 70                   | 1.000               | 1.000 | 1.000              |
| 75                   | 0.982               | 1.050 | 0.962              |
| 80                   | 0.953               | 1.103 | 0.921              |

|          | Cooling  |       |        |         |         |          |          |         |       |       |                      |  |
|----------|----------|-------|--------|---------|---------|----------|----------|---------|-------|-------|----------------------|--|
| Ent. Air | Total    |       | Sensik | le Capa | city-En | tering A | ir Dry B | ulb, °F |       | Dawas | Heat of<br>Rejection |  |
| WB °F    | Capacity | 65    | 70     | 75      | 80      | 80.6     | 85       | 90      | 95    | Power |                      |  |
| 45       | 0.557    | *     | *      | *       | *       | *        | *        | *       | *     | 0.986 | 0.672                |  |
| 50       | 0.658    | 1.100 | *      | *       | *       | *        | *        | *       | *     | 0.989 | 0.747                |  |
| 55       | 0.758    | 0.861 | 1.091  | *       | *       | *        | *        | *       | *     | 0.992 | 0.821                |  |
| 60       | 0.859    | 0.623 | 0.854  | 1.091   | 1.325   | 1.383    | *        | *       | *     | 0.996 | 0.896                |  |
| 65       | 0.960    |       | 0.617  | 0.857   | 1.093   | 1.151    | 1.326    | *       | *     | 0.999 | 0.970                |  |
| 66.2     | 0.984    |       | 0.561  | 0.801   | 1.037   | 1.095    | 1.270    | 1.521   | *     | 1.000 | 0.988                |  |
| 67       | 1.000    |       | 0.523  | 0.763   | 1.000   | 1.058    | 1.232    | 1.482   | *     | 1.000 | 1.000                |  |
| 70       | 1.060    |       |        | 0.623   | 0.861   | 0.919    | 1.090    | 1.339   | 1.563 | 1.002 | 1.045                |  |
| 75       | 1.161    |       |        |         | 0.629   | 0.686    | 0.854    | 1.101   | 1.318 | 1.005 | 1.119                |  |

<sup>\* =</sup> Sensible capacity equals total capacity
AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling - 80.6°F DB/66.2°F WB, and Heating - 68°F DB/59°F WB
entering air temperature

### **Motorized Water Valve**

|           | N.O./N.C. N<br>Water Valve |                              | Modulating Valve |                              |  |  |
|-----------|----------------------------|------------------------------|------------------|------------------------------|--|--|
| Unit Size | Cv                         | Max<br>Close-Off<br>Pressure | Cv               | Max<br>Close-Off<br>Pressure |  |  |
|           | gpm/psig                   | psig                         | gpm/psig         | psig                         |  |  |
| 09        | 4.9                        | 125                          | 3.0              | 200                          |  |  |
| 12        | 4.9                        | 125                          | 3.0              | 200                          |  |  |
| 15        | 10.3                       | 125                          | 4.7              | 200                          |  |  |
| 18        | 10.3                       | 125                          | 4.7              | 200                          |  |  |
| 24        | 10.3                       | 125                          | 7.4              | 200                          |  |  |
| 30        | 10.3                       | 125                          | 7.4              | 200                          |  |  |
| 36        | 10.3                       | 125                          | 7.4              | 200                          |  |  |

## **Antifreeze Correction Table**

| EWT | Austifus and True  | A matifus are 0/ |           | Cooling      |       | Heatir    | ng    | WDD   |
|-----|--------------------|------------------|-----------|--------------|-------|-----------|-------|-------|
| EWI | Antifreeze Type    | Antifreeze %     | Total Cap | Sensible Cap | Watts | Total Cap | Watts | WPD   |
|     | Water              | 0%               | 1         | 1            | 1     | 1         | 1     | 1     |
|     |                    | 5%               | 0.998     | 0.998        | 1.002 | 0.996     | 0.999 | 1.025 |
|     |                    | 10%              | 0.996     | 0.996        | 1.003 | 0.991     | 0.997 | 1.048 |
|     |                    | 15%              | 0.994     | 0.994        | 1.005 | 0.987     | 0.996 | 1.098 |
|     |                    | 20%              | 0.991     | 0.991        | 1.006 | 0.982     | 0.994 | 1.142 |
|     | E45 1              | 25%              | 0.986     | 0.986        | 1.009 | 0.972     | 0.991 | 1.207 |
|     | Ethanol            | 30%              | 0.981     | 0.981        | 1.012 | 0.962     | 0.988 | 1.265 |
|     |                    | 35%              | 0.977     | 0.977        | 1.015 | 0.953     | 0.985 | 1.312 |
|     |                    | 40%              | 0.972     | 0.972        | 1.018 | 0.943     | 0.982 | 1.37  |
|     |                    | 45%              | 0.966     | 0.966        | 1.023 | 0.931     | 0.978 | 1.431 |
|     |                    | 50%              | 0.959     | 0.959        | 1.027 | 0.918     | 0.974 | 1.494 |
|     |                    | 5%               | 0.998     | 0.998        | 1.002 | 0.996     | 0.999 | 1.021 |
|     |                    | 10%              | 0.996     | 0.996        | 1.003 | 0.991     | 0.997 | 1.04  |
|     |                    | 15%              | 0.994     | 0.994        | 1.004 | 0.987     | 0.996 | 1.079 |
|     |                    | 20%              | 0.991     | 0.991        | 1.005 | 0.982     | 0.995 | 1.114 |
|     | Ethadana Ohaal     | 25%              | 0.988     | 0.988        | 1.008 | 0.976     | 0.993 | 1.146 |
|     | Ethylene Glycol    | 30%              | 0.985     | 0.985        | 1.01  | 0.969     | 0.99  | 1.175 |
|     |                    | 35%              | 0.982     | 0.982        | 1.012 | 0.963     | 0.988 | 1.208 |
|     |                    | 40%              | 0.979     | 0.979        | 1.014 | 0.956     | 0.986 | 1.243 |
|     |                    | 45%              | 0.976     | 0.976        | 1.016 | 0.95      | 0.984 | 1.278 |
| 90  |                    | 50%              | 0.972     | 0.972        | 1.018 | 0.943     | 0.982 | 1.314 |
|     |                    | 5%               | 0.997     | 0.997        | 1.002 | 0.993     | 0.998 | 1.039 |
|     |                    | 10%              | 0.993     | 0.993        | 1.004 | 0.986     | 0.996 | 1.075 |
|     |                    | 15%              | 0.99      | 0.99         | 1.007 | 0.979     | 0.994 | 1.116 |
|     |                    | 20%              | 0.986     | 0.986        | 1.009 | 0.972     | 0.991 | 1.154 |
|     | Methanol           | 25%              | 0.982     | 0.982        | 1.012 | 0.964     | 0.989 | 1.189 |
|     | Wethanoi           | 30%              | 0.978     | 0.978        | 1.014 | 0.955     | 0.986 | 1.221 |
|     |                    | 35%              | 0.974     | 0.974        | 1.017 | 0.947     | 0.984 | 1.267 |
|     |                    | 40%              | 0.97      | 0.97         | 1.02  | 0.939     | 0.981 | 1.31  |
|     |                    | 45%              | 0.966     | 0.966        | 1.023 | 0.93      | 0.978 | 1.353 |
|     |                    | 50%              | 0.961     | 0.961        | 1.026 | 0.92      | 0.975 | 1.398 |
|     |                    | 5%               | 0.995     | 0.995        | 1.003 | 0.99      | 0.997 | 1.065 |
|     |                    | 10%              | 0.99      | 0.99         | 1.006 | 0.98      | 0.994 | 1.119 |
|     |                    | 15%              | 0.986     | 0.986        | 1.009 | 0.971     | 0.991 | 1.152 |
|     |                    | 20%              | 0.981     | 0.981        | 1.012 | 0.962     | 0.988 | 1.182 |
|     | Propylene Glycol   | 25%              | 0.978     | 0.978        | 1.014 | 0.956     | 0.986 | 1.227 |
|     | 1 Topylette Giyeol | 30%              | 0.975     | 0.975        | 1.016 | 0.95      | 0.984 | 1.267 |
|     |                    | 35%              | 0.972     | 0.972        | 1.018 | 0.944     | 0.982 | 1.312 |
|     |                    | 40%              | 0.969     | 0.969        | 1.02  | 0.938     | 0.98  | 1.356 |
|     |                    | 45%              | 0.965     | 0.965        | 1.023 | 0.929     | 0.977 | 1.402 |
|     |                    | 50%              | 0.96      | 0.96         | 1.026 | 0.919     | 0.974 | 1.45  |

**Table Continued on Next Page** 

## **Antifreeze Correction Table**

### **Table Continued from Previous Page**

|     | A 415 -            | A 415 04     |           | Cooling      |       | Heatii    | ng    | 14/22 |
|-----|--------------------|--------------|-----------|--------------|-------|-----------|-------|-------|
| EWT | Antifreeze Type    | Antifreeze % | Total Cap | Sensible Cap | Watts | Total Cap | Watts | WPD   |
|     | Water              | 0%           | 1         | 1            | 1     | 1         | 1     | 1     |
|     |                    | 5%           | 0.991     | 0.991        | 1.006 | 0.981     | 0.994 | 1.14  |
|     |                    | 10%          | 0.981     | 0.981        | 1.012 | 0.961     | 0.988 | 1.242 |
|     |                    | 15%          | 0.973     | 0.973        | 1.018 | 0.944     | 0.983 | 1.295 |
|     |                    | 20%          | 0.964     | 0.964        | 1.024 | 0.927     | 0.977 | 1.343 |
|     | E45 1              | 25%          | 0.959     | 0.959        | 1.028 | 0.917     | 0.974 | 1.363 |
|     | Ethanol            | 30%          | 0.954     | 0.954        | 1.031 | 0.907     | 0.97  | 1.383 |
|     |                    | 35%          | 0.949     | 0.949        | 1.035 | 0.897     | 0.967 | 1.468 |
|     |                    | 40%          | 0.944     | 0.944        | 1.038 | 0.887     | 0.964 | 1.523 |
|     |                    | 45%          | 0.94      | 0.94         | 1.041 | 0.88      | 0.962 | 1.58  |
|     |                    | 50%          | 0.936     | 0.936        | 1.043 | 0.872     | 0.959 | 1.639 |
|     |                    | 5%           | 0.997     | 0.997        | 1.002 | 0.993     | 0.998 | 1.04  |
|     |                    | 10%          | 0.993     | 0.993        | 1.004 | 0.986     | 0.996 | 1.075 |
|     |                    | 15%          | 0.99      | 0.99         | 1.006 | 0.98      | 0.994 | 1.122 |
|     |                    | 20%          | 0.987     | 0.987        | 1.008 | 0.973     | 0.992 | 1.163 |
|     | Editorio Chorol    | 25%          | 0.983     | 0.983        | 1.011 | 0.966     | 0.99  | 1.195 |
|     | Ethylene Glycol    | 30%          | 0.979     | 0.979        | 1.013 | 0.958     | 0.987 | 1.225 |
|     |                    | 35%          | 0.976     | 0.976        | 1.016 | 0.951     | 0.985 | 1.279 |
|     |                    | 40%          | 0.972     | 0.972        | 1.018 | 0.943     | 0.982 | 1.324 |
|     |                    | 45%          | 0.969     | 0.969        | 1.021 | 0.937     | 0.98  | 1.371 |
| 30  |                    | 50%          | 0.966     | 0.966        | 1.023 | 0.93      | 0.978 | 1.419 |
|     |                    | 5%           | 0.995     | 0.995        | 1.004 | 0.989     | 0.997 | 1.069 |
|     |                    | 10%          | 0.989     | 0.989        | 1.007 | 0.978     | 0.993 | 1.127 |
|     |                    | 15%          | 0.984     | 0.984        | 1.011 | 0.968     | 0.99  | 1.164 |
|     |                    | 20%          | 0.979     | 0.979        | 1.014 | 0.957     | 0.986 | 1.197 |
|     | Methanol           | 25%          | 0.975     | 0.975        | 1.017 | 0.949     | 0.984 | 1.216 |
|     | wethanoi           | 30%          | 0.971     | 0.971        | 1.019 | 0.941     | 0.981 | 1.235 |
|     |                    | 35%          | 0.967     | 0.967        | 1.022 | 0.933     | 0.979 | 1.286 |
|     |                    | 40%          | 0.963     | 0.963        | 1.025 | 0.924     | 0.976 | 1.323 |
|     |                    | 45%          | 0.959     | 0.959        | 1.028 | 0.917     | 0.974 | 1.36  |
|     |                    | 50%          | 0.955     | 0.955        | 1.03  | 0.91      | 0.971 | 1.399 |
|     |                    | 5%           | 0.995     | 0.995        | 1.004 | 0.989     | 0.997 | 1.071 |
|     |                    | 10%          | 0.989     | 0.989        | 1.007 | 0.978     | 0.993 | 1.13  |
|     |                    | 15%          | 0.985     | 0.985        | 1.01  | 0.968     | 0.99  | 1.206 |
|     |                    | 20%          | 0.98      | 0.98         | 1.013 | 0.958     | 0.987 | 1.27  |
|     | Propylene Glycol   | 25%          | 0.974     | 0.974        | 1.017 | 0.947     | 0.983 | 1.359 |
|     | r Topylette Glycol | 30%          | 0.968     | 0.968        | 1.021 | 0.935     | 0.979 | 1.433 |
|     |                    | 35%          | 0.963     | 0.963        | 1.025 | 0.924     | 0.976 | 1.522 |
|     |                    | 40%          | 0.957     | 0.957        | 1.029 | 0.913     | 0.972 | 1.614 |
|     |                    | 45%          | 0.949     | 0.949        | 1.034 | 0.898     | 0.967 | 1.712 |
|     |                    | 50%          | 0.941     | 0.941        | 1.039 | 0.882     | 0.962 | 1.816 |

## Hybrid Performance Data – Correction Tables

### Blower Motor Correction Table

| Size  | Hydronic<br>Coil Static |
|-------|-------------------------|
| TSL09 | 0.1                     |
| TSL12 | 0.1                     |
| TSL15 | 0.1                     |
| TSL18 | 0.15                    |
| TSL24 | 0.15                    |
| TSL30 | 0.15                    |
| TSL36 | 0.2                     |

## **Entering Air Correction Table**

| Entering<br>Air DB<br>(°F) | Heating<br>Capacity |
|----------------------------|---------------------|
| 45                         | 1.65                |
| 50                         | 1.52                |
| 55                         | 1.39                |
| 60                         | 1.25                |
| 65                         | 1.12                |
| 68                         | 1.04                |
| 70                         | 1                   |
| 75                         | 0.85                |
| 80                         | 0.72                |

### Airflow Correction Table

| % of<br>Nominal<br>(rated)<br>SCFM | Heating<br>Capacity |
|------------------------------------|---------------------|
| 70                                 | 0.8                 |
| 75                                 | 0.8                 |
| 80                                 | 0.9                 |
| 85                                 | 0.9                 |
| 90                                 | 0.9                 |
| 95                                 | 1.0                 |
| 100                                | 1.0                 |
| 105                                | 1.0                 |

|                     |        |           |          | External Sta | itic Pressur | e (in. wg) |      |          |                           |      |  |  |
|---------------------|--------|-----------|----------|--------------|--------------|------------|------|----------|---------------------------|------|--|--|
|                     | Spee   | d Tap     | 0.1      | 0.2          | 0.3          | 0.4        | 0.5  | 0.6      | 0.7                       | 0.8  |  |  |
|                     |        | RPM       | 1000     | 1120         | 1210         | 1290       | 1380 |          |                           |      |  |  |
| ္ပ                  | Low    | Power (W) | 145      | 139          | 132          | 125        | 119  |          |                           |      |  |  |
| Stat                |        | CFM       | 350      | 340          | 320          | 290        | 270  |          |                           |      |  |  |
| PSC - High Static   |        | RPM       |          |              |              |            | 1520 | 1570     | 1610                      | 1650 |  |  |
| Ξ                   | Medium | Power (W) |          |              |              |            | 162  | 151      | 139                       | 127  |  |  |
| ၁၄                  |        | CFM       |          | Operatio     | n not recon  | nmended    | 430  | 390      | 340                       | 280  |  |  |
| <u> </u>            |        | RPM       |          |              |              |            |      |          |                           | 1710 |  |  |
|                     | High   | Power (W) |          |              |              |            |      |          |                           | 151  |  |  |
|                     |        | CFM       |          |              |              |            |      |          |                           | 390  |  |  |
|                     | Spee   | d Tap     | 0.1      | 0.2          | 0.3          | 0.4        | 0.5  | 0.6      | 0.7                       | 0.8  |  |  |
|                     |        | RPM       | 980      | 1080         | 1170         | 1260       | 1360 |          |                           |      |  |  |
|                     | 1      | Power (W) | 47       | 51           | 54           | 58         | 62   | Operatio | Operation not recommended |      |  |  |
| l ≅                 |        | CFM       | 340      | 320          | 290          | 270        | 240  |          |                           |      |  |  |
| е<br>Ш              |        | RPM       | 1060     | 1160         | 1230         | 1320       | 1390 | 1500     |                           |      |  |  |
| 합                   | 2      | Power (W) | 58       | 62           | 66           | 70         | 75   | 79       |                           |      |  |  |
| ļ Ļ                 |        | CFM       | 380      | 360          | 330          | 310        | 280  | 260      |                           |      |  |  |
| Constant Torque ECM |        | RPM       |          | 1230         | 1310         | 1390       | 1440 | 1530     | 1590                      | 1650 |  |  |
| ous                 | 3      | Power (W) |          | 79           | 84           | 88         | 92   | 97       | 101                       | 105  |  |  |
| ပ                   |        | CFM       |          | 400          | 380          | 360        | 340  | 320      | 290                       | 270  |  |  |
|                     |        | RPM       |          |              |              | 1470       | 1480 | 1550     | 1630                      | 1680 |  |  |
|                     | 4      | Power (W) | Operatio | n not recon  | nmended      | 108        | 113  | 117      | 122                       | 126  |  |  |
|                     |        | CFM       |          |              |              | 410        | 390  | 370      | 360                       | 340  |  |  |
|                     | CI     | FM        | 0.1      | 0.2          | 0.3          | 0.4        | 0.5  | 0.6      | 360                       | 340  |  |  |
| C                   | 250    | RPM       | 810      | 950          | 1100         | 1230       | 1370 | 1490     | 1560                      | 1640 |  |  |
| Constant Volume ECM | 250    | Power (W) | 30       | 38           | 47           | 57         | 67   | 78       | 89                        | 101  |  |  |
| L L                 | 300    | RPM       | 900      | 1050         | 1180         | 1300       | 1410 | 1520     | 1590                      | 1660 |  |  |
| %                   | 300    | Power (W) | 38       | 48           | 58           | 69         | 81   | 93       | 105                       | 118  |  |  |
| tanı                | 350    | RPM       | 1000     | 1140         | 1260         | 1380       | 1450 | 1540     | 1620                      | 1690 |  |  |
| onsi                | 350    | Power (W) | 50       | 62           | 73           | 85         | 98   | 110      | 124                       | 137  |  |  |
| ŭ                   | 400    | RPM       | 1100     | 1230         | 1340         | 1450       | 1490 | 1570     |                           |      |  |  |
|                     | 400    | Power (W) | 65       | 79           | 92           | 105        | 119  | 132      |                           |      |  |  |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at  $80^{\circ}$ F DB and  $67^{\circ}$ F WB. CFM Tolerance is 7% RPM/Watt Tolerance 10%

|                     |               |           |      | External Sta              | tic Pressur | e (in. wg) |           |             |             |         |
|---------------------|---------------|-----------|------|---------------------------|-------------|------------|-----------|-------------|-------------|---------|
|                     | Spee          | d Tap     | 0.1  | 0.2                       | 0.3         | 0.4        | 0.5       | 0.6         | 0.7         | 0.8     |
|                     |               | RPM       | 980  | 1090                      | 1190        |            |           |             |             |         |
| <u>:</u>            | Low           | Power (W) | 145  | 139                       | 132         |            | Operation | on not reco | mmended     |         |
| PSC - High Static   |               | CFM       | 350  | 340                       | 320         |            |           |             |             |         |
| gh                  |               | RPM       |      | 1290                      | 1360        | 1440       | 1470      | 1540        | 1590        |         |
| 푸                   | Medium        | Power (W) |      | 197                       | 185         | 174        | 162       | 151         | 139         |         |
| ၁၄                  |               | CFM       |      | 500                       | 480         | 460        | 430       | 390         | 340         |         |
| <b> </b>            |               | RPM       |      |                           |             |            |           | 1590        | 1630        | 1680    |
|                     | High          | Power (W) |      | Оре                       | ration not  | recommend  | ded       | 151         | 151         | 151     |
|                     |               | CFM       |      |                           |             |            |           | 520         | 470         | 390     |
|                     | Spee          | d Tap     | 0.1  | 0.2                       | 0.3         | 0.4        | 0.5       | 0.6         | 0.7         | 0.8     |
|                     | RPM           |           | 1070 | 1140                      | 1230        | 1320       | 1400      |             |             |         |
|                     | 1             | Power (W) | 66   | 70                        | 74          | 78         | 82        | Operation   | n not recon | nmended |
| ∑<br>C              |               | CFM       | 410  | 380                       | 360         | 330        | 310       |             |             |         |
| e<br>Ü              |               | RPM       | 1140 | 1190                      | 1280        | 1370       | 1430      | 1510        | 1580        |         |
| rdn                 | 2             | Power (W) | 54   | 58                        | 61          | 65         | 69        | 73          | 77          |         |
| ļ                   |               | CFM       | 450  | 420                       | 400         | 380        | 360       | 330         | 310         |         |
| tani                | 3             | RPM       | 1190 | 1240                      | 1320        | 1400       | 1450      | 1530        | 1590        | 1660    |
| Constant Torque ECM |               | Power (W) | 79   | 83                        | 87          | 91         | 96        | 100         | 104         | 108     |
| Ö                   |               | CFM       | 480  | 460                       | 440         | 420        | 400       | 370         | 350         | 330     |
|                     |               | RPM       |      |                           |             |            |           | 1580        | 1630        | 1690    |
|                     | 4             | Power (W) |      | Operation not recommended |             |            |           |             | 141         | 145     |
|                     |               | CFM       |      |                           |             |            |           | 480         | 460         | 440     |
|                     | CI            | FM        | 0.1  | 0.2                       | 0.3         | 0.4        | 0.5       | 0.6         | 0.7         | 0.8     |
|                     | 200           | RPM       | 890  | 1040                      | 1170        | 1300       | 1400      | 1500        | 1570        | 1660    |
| Constant Volume ECM | 300           | Power (W) | 38   | 48                        | 58          | 69         | 81        | 93          | 105         | 118     |
| Э6 E                | 350           | RPM       | 980  | 1100                      | 1220        | 1340       | 1430      | 1520        | 1590        | 1670    |
| l n                 | 330           | Power (W) | 50   | 62                        | 73          | 85         | 98        | 110         | 124         | 137     |
| Ş                   | 400           | RPM       | 1060 | 1170                      | 1280        | 1380       | 1450      | 1540        |             |         |
| tan                 | 400           | Power (W) | 65   | 79                        | 92          | 105        | 119       | 132         |             |         |
| ons                 | 450           | RPM       | 1140 | 1230                      | 1330        | 1430       |           |             |             |         |
| ŭ                   | 430           | Power (W) | 87   | 101                       | 115         | 128        | Op        | peration no | t recommen  | ided    |
|                     | 500           | RPM       | 1220 |                           |             |            |           |             |             |         |
|                     | 500 Power (W) |           |      |                           |             |            |           |             |             |         |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at  $80^{\circ}$ F DB and  $67^{\circ}$ F WB. CFM Tolerance is 7% RPM/Watt Tolerance 10%

|                     |        |           | E   | xternal Sta | tic Pressure | e (in. wg) |      |           |           |         |
|---------------------|--------|-----------|-----|-------------|--------------|------------|------|-----------|-----------|---------|
|                     | Spee   | ed Tap    | 0.1 | 0.2         | 0.3          | 0.4        | 0.5  | 0.6       | 0.7       | 0.8     |
|                     |        | RPM       | 860 | 890         | 900          | 950        | 990  | 1050      |           |         |
| ္ပ                  | Low    | Power (W) | 219 | 208         | 197          | 186        | 175  | 164       |           |         |
| PSC - High Static   |        | CFM       | 700 | 660         | 610          | 570        | 520  | 480       |           |         |
| gh                  |        | RPM       |     |             | 960          | 1010       | 1030 | 1070      | 1590      |         |
| 투                   | Medium | Power (W) |     |             | 225          | 212        | 200  | 187       | 139       |         |
| ၁၄                  |        | CFM       |     |             | 710          | 670        | 610  | 540       | 340       |         |
| <u> </u>            |        | RPM       |     |             |              |            | 1080 | 1110      | 1140      | 1680    |
|                     | High   | Power (W) |     | Operatio    | n not recor  | nmended    | 248  | 233       | 219       | 151     |
|                     |        | CFM       |     |             |              |            | 720  | 630       | 530       | 390     |
|                     | Spee   | ed Tap    | 0.1 | 0.2         | 0.3          | 0.4        | 0.5  | 0.6       | 0.7       | 0.8     |
|                     |        | RPM       | 720 | 770         | 810          | 870        |      |           |           |         |
|                     | 1      | Power (W) | 66  | 70          | 74           | 79         |      |           |           |         |
|                     |        | CFM       | 560 | 520         | 480          | 430        |      | 0         |           |         |
| l _                 |        | RPM       | 770 | 810         | 850          | 910        | 960  | Operation | not recon | ımenaea |
| S<br>S<br>S         | 2      | Power (W) | 79  | 83          | 87           | 92         | 98   |           |           |         |
| e E                 |        | CFM       | 610 | 570         | 540          | 500        | 450  |           |           |         |
| org                 |        | RPM       | 820 | 860         | 890          | 930        | 990  | 1040      |           |         |
| Ę                   | 3      | Power (W) | 95  | 101         | 104          | 110        | 114  | 121       |           |         |
| staı                |        | CFM       | 660 | 630         | 600          | 540        | 500  | 460       |           |         |
| Constant Torque ECM |        | RPM       | 850 | 900         | 910          | 970        | 1010 | 1070      | 1120      |         |
|                     | 4      | Power (W) | 107 | 111         | 117          | 123        | 128  | 134       | 141       |         |
|                     |        | CFM       | 690 | 670         | 630          | 600        | 560  | 520       | 470       |         |
|                     |        | RPM       |     |             | 960          | 1010       | 1050 | 1100      | 1150      | 1210    |
|                     | 5      | Power (W) |     |             | 142          | 147        | 153  | 159       | 166       | 167     |
|                     |        | CFM       |     |             | 710          | 670        | 640  | 600       | 560       | 510     |
|                     | C      | FM        | 0.1 | 0.2         | 0.3          | 0.4        | 0.5  | 0.6       | 0.7       | 0.8     |
| _                   | 450    | RPM       | 620 | 700         | 790          | 880        | 960  | 1040      | 1110      | 1190    |
|                     | 450    | Power (W) | 39  | 53          | 67           | 82         | 96   | 110       | 124       | 139     |
| ne                  | 500    | RPM       | 670 | 750         | 830          | 910        | 990  | 1060      | 1130      | 1210    |
| l lig               | 500    | Power (W) | 50  | 64          | 78           | 93         | 107  | 121       | 135       | 150     |
| t                   | 600    | RPM       | 760 | 840         | 890          | 970        | 1030 | 1100      | 1160      | 1230    |
| Constant Volume ECM | 600    | Power (W) | 83  | 97          | 111          | 125        | 139  | 153       | 167       | 181     |
| , on                | 650    | RPM       | 810 | 880         | 920          | 1000       | 1050 | 1120      | 1180      | 1250    |
|                     | 030    | Power (W) | 104 | 118         | 133          | 147        | 162  | 176       | 191       | 205     |
|                     | 700    | RPM       | 860 | 930         | 960          | 1030       | 1070 | 1140      | 1200      | 1260    |
|                     | 700    | Power (W) | 125 | 140         | 155          | 170        | 185  | 199       | 214       | 229     |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at 80°F DB and 67°F WB. CFM Tolerance is 7% RPM/Watt Tolerance 10%

|                     |        |           | E   | External Sta | itic Pressur | e (in. wg) |      |            |            |      |
|---------------------|--------|-----------|-----|--------------|--------------|------------|------|------------|------------|------|
|                     | Spee   | d Tap     | 0.1 | 0.2          | 0.3          | 0.4        | 0.5  | 0.6        | 0.7        | 0.8  |
|                     |        | RPM       |     |              | 1030         | 1090       | 1110 | 1120       | 1130       |      |
| <u>:</u>            | Low    | Power (W) |     |              | 246          | 235        | 223  | 212        | 200        |      |
| Staf                |        | CFM       |     |              | 760          | 710        | 650  | 580        | 510        |      |
| gh (g               |        | RPM       |     |              |              | 1130       | 1130 | 1140       | 1140       |      |
| 후                   | Medium | Power (W) |     |              |              | 251        | 239  | 228        | 216        |      |
| PSC - High Static   |        | CFM       |     |              |              | 750        | 680  | 610        | 530        |      |
| <u> </u>            |        | RPM       |     |              |              |            | 1180 | 1180       | 1170       |      |
|                     | High   | Power (W) | Op  | eration not  | recommen     | ded        | 282  | 270        | 258        |      |
|                     | CFM    |           |     |              |              |            | 740  | 660        | 570        |      |
|                     | Spee   | d Tap     | 0.1 | 0.2          | 0.3          | 0.4        | 0.5  | 0.6        | 0.7        | 0.8  |
|                     |        | RPM       | 750 | 800          | 850          | 880        |      |            |            |      |
|                     | 1      | Power (W) | 73  | 77           | 82           | 87         | Op   | eration no | t recommen | ded  |
|                     |        | CFM       | 590 | 550          | 500          | 450        |      |            |            |      |
| I₂                  | 2      | RPM       | 820 | 860          | 910          | 960        | 990  | 1030       |            |      |
|                     |        | Power (W) | 95  | 99           | 105          | 110        | 115  | 119        |            |      |
| ant                 |        | CFM       | 660 | 630          | 590          | 540        | 500  | 460        |            |      |
| Į į                 |        | RPM       | 890 | 930          | 960          | 1040       | 1060 | 1090       | 1130       | 1200 |
| E                   | 3      | Power (W) | 123 | 127          | 132          | 138        | 144  | 149        | 154        | 158  |
| Constant Torque ECM |        | CFM       | 730 | 700          | 670          | 640        | 590  | 550        | 520        | 490  |
| Sor                 |        | RPM       |     | 970          | 1000         | 1080       | 1110 | 1140       | 1170       | 1220 |
|                     | 4      | Power (W) |     | 148          | 152          | 158        | 164  | 170        | 176        | 172  |
|                     |        | CFM       |     | 750          | 720          | 690        | 660  | 610        | 570        | 520  |
|                     |        | RPM       |     |              |              |            |      | 1230       | 1180       | 1180 |
|                     | 5      | Power (W) |     | Operation    | not recom    | nmended    |      | 217        | 182        | 154  |
|                     |        | CFM       |     |              |              |            |      | 730        | 580        | 470  |
|                     | CI     | FM        | 0.1 | 0.2          | 0.3          | 0.4        | 0.5  | 0.6        | 0.7        | 0.8  |
| S                   | =00    | RPM       | 660 | 750          | 850          | 920        | 990  | 1060       | 1120       | 1200 |
| Constant Volume ECM | 500    | Power (W) | 52  | 67           | 81           | 96         | 110  | 125        | 139        | 153  |
| Inn                 | 600    | RPM       | 760 | 840          | 920          | 1010       | 1070 | 1130       | 1200       | 1270 |
| Š                   | 600    | Power (W) | 88  | 102          | 116          | 130        | 144  | 158        | 172        | 186  |
| tant                | 700    | RPM       | 860 | 930          | 980          | 1090       | 1150 | 1210       | 1280       | 1340 |
| nst                 | 700    | Power (W) | 138 | 153          | 167          | 182        | 196  | 211        | 225        | 240  |
| ပိ                  | 800    | RPM       | 960 | 1010         | 1050         | 1170       | 1220 | 1280       | 1360       | 1400 |
|                     | 000    | Power (W) | 199 | 216          | 232          | 249        | 265  | 282        | 298        | 315  |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at 80°F DB and 67°F WB. CFM Tolerance is 7%

RPM/Watt Tolerance 10%

|                     |        |           | E   | External Sta              | itic Pressui | e (in. wg) |     |      |      |      |  |
|---------------------|--------|-----------|-----|---------------------------|--------------|------------|-----|------|------|------|--|
|                     | Spee   | d Tap     | 0.1 | 0.2                       | 0.3          | 0.4        | 0.5 | 0.6  | 0.7  | 0.8  |  |
|                     |        | RPM       |     |                           |              | 900        | 940 | 980  | 1020 | 1070 |  |
| Ęį                  | Low    | Power (W) |     |                           |              | 311        | 295 | 279  | 263  | 246  |  |
| Sta                 |        | CFM       |     |                           |              | 940        | 880 | 810  | 720  | 630  |  |
| gh                  |        | RPM       |     |                           |              |            | 980 | 1010 | 1040 | 1080 |  |
| 🖺                   | Medium | Power (W) |     |                           |              |            | 325 | 305  | 285  | 265  |  |
| PSC - High Static   |        | CFM       | 0.5 | aration not               | *********    | dad        | 980 | 900  | 800  | 690  |  |
| <u> </u>            |        | RPM       | Op  | Operation not recommended |              |            |     |      |      |      |  |
|                     | High   | Power (W) |     |                           |              |            |     |      |      | 343  |  |
|                     |        | CFM       |     |                           |              |            |     |      |      | 890  |  |
|                     | Spee   | d Tap     | 0.1 | 0.2                       | 0.3          | 0.4        | 0.5 | 0.6  | 0.7  | 0.8  |  |
|                     |        | RPM       | 680 | 720                       | 770          | 820        | 870 | 930  |      |      |  |
|                     | 1      | Power (W) | 110 | 117                       | 123          | 131        | 138 | 146  |      |      |  |
|                     |        | CFM       | 840 | 800                       | 760          | 720        | 670 | 630  |      |      |  |
| 5                   |        | RPM       | 730 | 770                       | 810          | 860        | 910 | 960  | 1020 | 1080 |  |
|                     | 2      | Power (W) | 145 | 153                       | 160          | 167        | 175 | 183  | 192  | 199  |  |
| ne                  |        | CFM       | 940 | 900                       | 860          | 830        | 790 | 750  | 710  | 670  |  |
| Constant Torque ECM |        | RPM       |     |                           |              | 900        | 950 | 1000 | 1050 | 1100 |  |
| Ę                   | 3      | Power (W) |     |                           |              | 212        | 219 | 227  | 236  | 246  |  |
| ısta                |        | CFM       |     |                           |              | 940        | 900 | 870  | 830  | 790  |  |
| So                  |        | RPM       |     |                           |              |            |     |      | 1080 | 1120 |  |
|                     | 4      | Power (W) |     |                           |              |            |     |      |      | 294  |  |
|                     |        | CFM       |     | 940                       | 900          |            |     |      |      |      |  |
|                     |        | RPM       |     | Opε                       | eration not  | recommend  | iea |      |      |      |  |
|                     | 5      | Power (W) |     |                           |              |            |     |      |      |      |  |
|                     |        | CFM       |     |                           |              |            |     |      |      |      |  |
|                     | CI     | FM        | 0.1 | 0.2                       | 0.3          | 0.4        | 0.5 | 0.6  | 0.7  | 0.8  |  |
|                     | 000    | RPM       | 560 | 630                       | 710          | 780        | 840 | 920  | 990  | 1070 |  |
| C                   | 600    | Power (W) | 52  | 70                        | 87           | 104        | 122 | 139  | 157  | 174  |  |
| Б<br>П              | 700    | RPM       | 610 | 680                       | 750          | 820        | 880 | 950  | 1020 | 1080 |  |
| un I                | 700    | Power (W) | 77  | 96                        | 115          | 134        | 153 | 172  | 191  | 210  |  |
| S <sub>2</sub>      | 900    | RPM       | 660 | 720                       | 790          | 850        | 910 | 980  | 1040 | 1100 |  |
| Constant Volume ECM | 800    | Power (W) | 102 | 122                       | 143          | 164        | 184 | 205  | 226  | 246  |  |
| Suc                 | 900    | RPM       | 710 | 770                       | 830          | 890        | 950 | 1010 | 1070 | 1120 |  |
| ŭ                   | 900    | Power (W) | 134 | 155                       | 176          | 197        | 218 | 239  | 261  | 282  |  |
|                     | 950    | RPM       | 740 | 790                       | 850          | 900        | 970 | 1020 | 1080 | 1120 |  |
|                     | 950    | Power (W) | 172 | 193                       | 214          | 234        | 255 | 276  | 296  | 317  |  |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at  $80^\circ$ F DB and  $67^\circ$ F WB. CFM Tolerance is 7%

RPM/Watt Tolerance 10%

|                     |        |           | I    | External Sta | itic Pressur | e (in. wg) |      |      |      |      |
|---------------------|--------|-----------|------|--------------|--------------|------------|------|------|------|------|
|                     | Spee   | d Tap     | 0.1  | 0.2          | 0.3          | 0.4        | 0.5  | 0.6  | 0.7  | 0.8  |
|                     |        | RPM       | 800  | 840          | 880          | 920        | 950  | 980  |      |      |
| i:                  | Low    | Power (W) | 360  | 344          | 328          | 311        | 295  | 279  |      |      |
| Staf                |        | CFM       | 1020 | 1010         | 980          | 940        | 880  | 810  |      |      |
| gh                  |        | RPM       | 870  | 910          | 940          | 980        | 1000 | 1020 | 1040 |      |
| 후                   | Medium | Power (W) | 405  | 385          | 365          | 345        | 325  | 305  | 285  |      |
| PSC - High Static   |        | CFM       | 1130 | 1120         | 1080         | 1040       | 980  | 900  | 800  |      |
| ă.                  |        | RPM       |      |              |              |            |      | 1120 | 1120 | 1130 |
|                     | High   | Power (W) |      | Operation    | not recom    |            | 395  | 369  | 343  |      |
|                     |        | CFM       |      |              |              |            |      | 1120 | 1010 | 890  |
|                     | Spee   | d Tap     | 0.1  | 0.2          | 0.3          | 0.4        | 0.5  | 0.6  | 0.7  | 0.8  |
|                     |        | RPM       | 810  | 840          | 870          | 910        | 950  | 1000 | 1050 | 1090 |
| İ                   | 1      | Power (W) | 177  | 185          | 194          | 203        | 212  | 221  | 229  | 236  |
|                     |        | CFM       | 1040 | 1000         | 960          | 920        | 880  | 850  | 810  | 770  |
| =                   |        | RPM       | 850  | 890          | 920          | 960        | 990  | 1040 | 1090 | 1130 |
|                     | 2      | Power (W) | 220  | 229          | 237          | 247        | 257  | 266  | 275  | 283  |
| ne                  |        | CFM       | 1110 | 1080         | 1050         | 1010       | 970  | 940  | 910  | 880  |
| Constant Torque ECM |        | RPM       |      |              | ,            |            | 1070 | 1110 | 1150 | 1180 |
| <u> </u>            | 3      | Power (W) |      |              |              | 363        | 373  | 384  |      |      |
| ısta                |        | CFM       |      |              |              |            | 1140 | 1100 | 1070 | 1040 |
| Ö                   |        | RPM       |      |              |              |            |      | 1190 | 1220 |      |
|                     | 4      | Power (W) | Ор   | eration not  | recommen     |            |      | 442  | 451  |      |
|                     |        | CFM       |      |              |              |            | 1170 | 1140 |      |      |
|                     |        | RPM       |      |              |              |            |      |      |      |      |
|                     | 5      | Power (W) |      |              |              |            |      |      |      |      |
|                     |        | CFM       |      |              |              |            |      |      |      |      |
|                     | С      | FM        | 0.1  | 0.2          | 0.3          | 0.4        | 0.5  | 0.6  | 0.7  | 0.8  |
| Σ :                 |        | RPM       | 620  | 690          | 750          | 810        | 890  | 960  | 1030 | 1080 |
| Constant Volume ECM | 750    | Power (W) | 85   | 109          | 133          | 157        | 182  | 206  | 230  | 254  |
| E                   | 0==    | RPM       | 700  | 760          | 820          | 880        | 950  | 1010 | 1070 | 1130 |
| 8                   | 875    | Power (W) | 131  | 157          | 183          | 209        | 235  | 261  | 287  | 313  |
| tant                | 4000   | RPM       | 780  | 840          | 890          | 950        | 1010 | 1070 | 1120 | 1170 |
| onst                | 1000   | Power (W) | 191  | 219          | 247          | 275        | 303  | 331  | 359  | 387  |
| ပိ                  | 4450   | RPM       | 880  | 930          | 980          | 1040       | 1080 | 1130 | 1180 | 1220 |
|                     | 1150   | Power (W) | 284  | 310          | 336          | 361        | 387  | 413  | 438  | 464  |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at 80°F DB and 67°F WB. CFM Tolerance is 7% RPM/Watt Tolerance 10%

|                     |           |           | E    | External Sta | itic Pressur | e (in. wg) |      |      |      |      |
|---------------------|-----------|-----------|------|--------------|--------------|------------|------|------|------|------|
|                     | Speed Tap |           |      | 0.2          | 0.3          | 0.4        | 0.5  | 0.6  | 0.7  | 0.8  |
|                     |           | RPM       | 730  | 770          | 820          |            |      |      |      |      |
| Ë                   | Low       | Power (W) | 378  | 358          | 338          |            |      |      |      |      |
| Staf                |           | CFM       | 930  | 920          | 900          |            |      |      |      |      |
| gh                  |           | RPM       | 910  | 950          | 970          | 1000       | 1020 | 1040 |      |      |
| 투                   | Medium    | Power (W) | 485  | 459          | 432          | 405        | 379  | 352  |      |      |
| PSC - High Static   |           | CFM       | 1210 | 1190         | 1150         | 1100       | 1030 | 950  |      |      |
| Δ.                  |           | RPM       |      |              | 1100         | 1120       | 1120 | 1130 | 1130 | 1130 |
|                     | High      | Power (W) |      |              | 529          | 501        | 472  | 444  | 415  | 386  |
|                     |           | CFM       |      |              | 1370         | 1310       | 1230 | 1130 | 1020 | 900  |
|                     | Spee      | d Tap     | 0.1  | 0.2          | 0.3          | 0.4        | 0.5  | 0.6  | 0.7  | 0.8  |
|                     |           | RPM       | 830  | 860          | 890          | 930        | 970  | 1020 |      |      |
|                     | 1         | Power (W) | 193  | 201          | 211          | 221        | 231  | 239  |      |      |
|                     |           | CFM       | 1080 | 1050         | 1020         | 980        | 950  | 910  |      |      |
| I≥                  | 2         | RPM       | 920  | 950          | 970          | 1010       | 1060 | 1090 | 1140 | 1170 |
|                     |           | Power (W) | 265  | 273          | 282          | 294        | 305  | 316  | 326  | 335  |
| enk                 |           | CFM       | 1220 | 1190         | 1150         | 1130       | 1100 | 1060 | 1030 | 1000 |
| o o                 |           | RPM       | 1020 | 1040         | 1070         | 1110       | 1140 | 1180 | 1220 | 1250 |
| Constant Torque ECM | 3         | Power (W) | 361  | 369          | 377          | 387        | 401  | 414  | 426  | 428  |
| nsta                |           | CFM       | 1370 | 1340         | 1310         | 1290       | 1260 | 1230 | 1200 | 1160 |
| S                   |           | RPM       | 940  | 970          | 1010         | 1050       | 1070 | 1150 |      |      |
|                     | 4         | Power (W) | 315  | 322          | 332          | 341        | 351  | 430  |      |      |
|                     |           | CFM       | 1240 | 1230         | 1200         | 1170       | 1140 | 1200 |      |      |
|                     |           | RPM       |      |              |              |            |      |      |      |      |
|                     | 5         | Power (W) |      |              |              |            |      |      |      |      |
|                     |           | CFM       |      |              |              |            |      |      |      |      |
|                     | CI        | FM        | 0.1  | 0.2          | 0.3          | 0.4        | 0.5  | 0.6  | 0.7  | 0.8  |
| Si<br>Si            | 900       | RPM       | 710  | 760          | 820          | 880        | 950  | 1020 | 1070 | 1130 |
| Constant Volume ECM | 300       | Power (W) | 132  | 157          | 183          | 208        | 234  | 260  | 285  | 311  |
| l n                 | 1050      | RPM       | 810  | 860          | 910          | 970        | 1030 | 1090 | 1150 | 1200 |
| >                   | 1000      | Power (W) | 215  | 244          | 272          | 301        | 329  | 358  | 386  | 415  |
| tant                | 1200      | RPM       | 910  | 950          | 1000         | 1050       | 1110 | 1160 | 1220 | 1260 |
| onst                | 1200      | Power (W) | 299  | 331          | 362          | 393        | 425  | 456  | 487  | 519  |
| ŭ                   | 1350      | RPM       | 1000 | 1050         | 1090         | 1140       | 1190 | 1240 | 1290 | 1330 |
|                     | 1330      | Power (W) | 458  | 483          | 509          | 534        | 560  | 585  | 611  | 636  |

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at 80°F DB and 67°F WB. CFM Tolerance is 7% RPM/Watt Tolerance 10%

## Performance Data - Ducted CV ECM

All data wet coil clean filter.

| Tranquility |         | Cooling              | g Mode                | Heatin               | g Mode                | Dehum                | nid Mode              | Continuous       |
|-------------|---------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|------------------|
| Model       | Setting | Fan Motor<br>Stage 1 | Fan Motor<br>Stage 2* | Fan Motor<br>Stage 1 | Fan Motor<br>Stage 2* | Fan Motor<br>Stage 1 | Fan Motor<br>Stage 2* | Fan Only<br>Mode |
|             | Default | 250                  | 350                   | 250                  | 350                   | 250                  | 300                   | 250              |
| TSL09       | Min     | 250                  | 250                   | 250                  | 250                   | 250                  | 250                   | 250              |
|             | Max     | 400                  | 400                   | 400                  | 400                   | 400                  | 400                   | 400              |
|             | Default | 300                  | 400                   | 300                  | 400                   | 300                  | 350                   | 300              |
| TSL12       | Min     | 300                  | 300                   | 300                  | 300                   | 300                  | 300                   | 300              |
|             | Max     | 500                  | 500                   | 500                  | 500                   | 500                  | 500                   | 500              |
|             | Default | 500                  | 600                   | 500                  | 600                   | 500                  | 500                   | 500              |
| TSL15       | Min     | 500                  | 500                   | 500                  | 500                   | 500                  | 500                   | 500              |
|             | Max     | 700                  | 700                   | 700                  | 700                   | 700                  | 700                   | 700              |
|             | Default | 600                  | 700                   | 600                  | 700                   | 600                  | 600                   | 500              |
| TSL18       | Min     | 600                  | 600                   | 600                  | 600                   | 500                  | 500                   | 500              |
|             | Max     | 800                  | 800                   | 800                  | 800                   | 800                  | 800                   | 800              |
|             | Default | 650                  | 850                   | 650                  | 850                   | 650                  | 650                   | 600              |
| TSL24       | Min     | 650                  | 650                   | 650                  | 650                   | 600                  | 600                   | 600              |
|             | Max     | 950                  | 950                   | 950                  | 950                   | 950                  | 950                   | 950              |
|             | Default | 850                  | 1000                  | 900                  | 1000                  | 850                  | 850                   | 700              |
| TSL30       | Min     | 850                  | 850                   | 900                  | 900                   | 800                  | 800                   | 700              |
|             | Max     | 1100                 | 1100                  | 1100                 | 1100                  | 900                  | 1100                  | 1100             |
|             | Default | 900                  | 1200                  | 900                  | 1250                  | 900                  | 900                   | 900              |
| TSL36       | Min     | 900                  | 900                   | 900                  | 900                   | 900                  | 900                   | 900              |
|             | Max     | 1250                 | 1250                  | 1350                 | 1350                  | 1250                 | 1250                  | 1250             |

All units AHRI/ISO/ASHRAE 13256-1 rated on CFM shown on performance data page.
If unit is dual voltage rated, then the airflow is rated at the lowest voltage, i.e. 208V for 208-230V units.
Shipped on default settings. C=Cooling; H=Heating; D=Dehumidification
Change from default setting with Service tool (ACDU03C) or AWC Communicating Thermostat.
Airflow is controlled within 7%, up to the max ESP.
TSL15-36 ramp default is 30 sec.
\* - Stage 2 CV ECM motor speed is engaged with a thermostat Y2 call. TSL Series is only available with singe-stage compressors.

## **Physical Data**

| Model                                            | 09                       | 12         | 15                  | 18          | 24                  | 30             | 36        |
|--------------------------------------------------|--------------------------|------------|---------------------|-------------|---------------------|----------------|-----------|
| Compressor (1 Each)                              |                          | Ro         | tary                |             |                     | Scroll         |           |
| Factory Charge HFC-410A (oz) [kg]                | 35 [.99]                 | 35 [.99]   | 43 [1.22]           | 53 [1.50]   | 71 [2.01]           | 66 [1.87]      | 75 [2.13] |
| Motor & Blower                                   |                          |            |                     |             |                     |                |           |
| 208-230V PSC (HP) [W]                            | 1/10 [75]                | 1/10 [75]  | 1/3 [249]           | 1/3 [249]   | 1/3 [249]           | 1/3 [249]      | 3/4 [560] |
| 265V PSC (HP) [W]                                | 1/10 [75]                | 1/10 [75]  | 1/3 [249]           | 1/3 [249]   | 1/2 [373]           | 1/2 [373]      | 3/4 [560] |
| Constant Volume ECM (HP) [W]                     | 1/8 [93]                 | 1/8 [93]   | 1/3 [249]           | 1/3 [249]   | 1/3 [249]           | 1/2 [373]      | 3/4 [560] |
| Constant Torque ECM (HP) [W]                     | 1/4 [186]                | 1/4 [186]  | 1/3 [249]           | 1/3 [249]   | 1/2 [373]           | 1/2 [373]      | 3/4 [560] |
| Blower Wheel Size (diam x w) - (in) [mm]         | 6.75 x 7.25 [165 x 184]  |            | 9.5 x 7.12          | [241 x 180] | 10.6                | 3 x 8.0 [270 x | 203]      |
| Chassis Air Coil                                 |                          |            |                     |             |                     |                |           |
| Air Coil Dimensions (h x w) - (in) [mm]          | 28 x 12.625 [711 x 321 ] |            | 28 x 14 [711 x 356] |             | 30 x 18 [762 x 457] |                | 57]       |
| Return Air Filter Dimensions (h x w) - (in) [mm] | 30 x 14 [7               | 762 x 356] | 30 x 16 [762 x 406] |             | 32 x 20 [813 x 508] |                |           |
| Coax Volume (Gallons) [Liters]                   | 0.26                     | [.98]      | 0.36 [1.4]          |             | 0.60 [2.3]          |                |           |
| Hose Size (in)                                   | 1/2                      |            | 3/4                 |             | 1                   |                |           |
| Weight                                           |                          |            |                     |             |                     |                |           |
| Chassis - (lbs) [kg]                             | 110 [50]                 | 117 [53]   | 123 [56]            | 125 [57]    | 186 [84]            | 190 [86]       | 192 [87]  |
| 65" Cabinet - (lbs) [kg]                         | 95 [43]                  |            | 108                 | [49]        | 142 [64]            |                |           |

| Unit Maximum Water Working Pressure  |                            |  |  |  |  |  |  |  |
|--------------------------------------|----------------------------|--|--|--|--|--|--|--|
| Options                              | Max Pressure PSIG<br>[kPa] |  |  |  |  |  |  |  |
| Base Unit (Hoses)                    | 400 [2,757]                |  |  |  |  |  |  |  |
| Internal Secondary Pump (ISP)        | 200 [1.378]                |  |  |  |  |  |  |  |
| Internal Motorized Water Valve (MWV) | 300 [2,068]                |  |  |  |  |  |  |  |
| Internal Modulating Valve            | 300 [2,068]                |  |  |  |  |  |  |  |
| Internal Auto Flow Valve             | 400 [2,757]                |  |  |  |  |  |  |  |

Use the lowest maximum pressure rating when multiple options are combined.

\* Units with MWV have 300 [2068] High Pressure Water switch - 250 [1723] Auto Reset

## **Hybrid Physical Data**

| Model                                               | 09          | 12                  | 15                  | 18                  | 24                  | 30                | 36        |
|-----------------------------------------------------|-------------|---------------------|---------------------|---------------------|---------------------|-------------------|-----------|
| Compressor (1 Each)                                 |             | Ro                  | tary                |                     |                     | Scroll            |           |
| Factory Charge HFC-410A (oz) [kg]                   | 35 [.99]    | 35 [.99]            | 43 [1.22]           | 53 [1.50]           | 71 [2.01]           | 66 [1.87]         | 75 [2.13] |
| Motor & Blower                                      |             |                     |                     |                     |                     |                   |           |
| Constant Volume ECM (HP) [W]                        | 1/8 [93]    | 1/4 [186]           | 1/3 [249]           | 1/3 [249]           | 1/2 [373]           | 3/4 [560]         | 3/4 [560] |
| Constant Torque ECM (HP) [W]                        | 1/4 [186]   | 1/4 [186]           | 1/3 [249]           | 1/3 [249]           | 1/2 [373]           | 1/2 [373]         | 3/4 [560] |
| Blower Wheel Size (diam x w) - (in) [mm]            | 6.75 x 7.25 | [165 x 184]         | 9.5 x 7.12          | [241 x 180]         | 10.6                | 3 x 8.0 [270 x    | 203]      |
| Chassis Air Coil                                    |             |                     |                     |                     |                     |                   |           |
| Refrigerant Air Coil Dimensions (h x w) - (in) [mm] | 28 x 12.625 | [711 x 321 ]        | 28 x 14 [711 x 356] |                     | 30 x 18 [762 x 457] |                   | 57]       |
| Hydronic Coil Dimensions (h x w) - (in) [mm]        | 28 x 12.625 | [711 x 321 ]        | 28 x 14 [711 x 356] |                     | 30 x 18 [762 x 457] |                   | 57]       |
| Return Air Filter Dimensions (h x w) - (in) [mm]    | 30 x 14 [7  | 30 x 14 [762 x 356] |                     | 30 x 16 [762 x 406] |                     | 32 x 20 [813 x 50 |           |
| Coax Volume (Gallons) [Liters]                      | 0.26        | [.98]               | 0.36 [1.4]          |                     | 0.60 [2.3]          |                   |           |
| Hydronic Coil Volume (Gallons) [Liters]             | 0.08        | [0.30]              | 0.61                | 0.61 [2.31]         |                     | 0.77 [2.91]       |           |
| Hose Size (in)                                      | 1.          | /2                  | 3                   | /4                  | 1                   |                   |           |
| Weight                                              |             |                     |                     |                     |                     |                   |           |
| Chassis - (lbs) [kg]                                | 132         | [60]                | 181                 | [83]                |                     | 228 [104]         |           |
| 65" Cabinet - (lbs) [kg]                            | 116 [53]    |                     | 128 [58]            |                     |                     | 139 [63]          |           |
| 80" Cabinet - (lbs) [kg]                            | 129 [59]    |                     | 142 [65]            |                     | 156 [71]            |                   |           |
| 88" Cabinet - (lbs) [kg]                            | 137 [63]    |                     | 151 [69]            |                     | 166 [76]            |                   |           |

| Unit Maximum Water Working Pressure  |                            |
|--------------------------------------|----------------------------|
| Options                              | Max Pressure PSIG<br>[kPa] |
| Base Unit                            | 400 [2,757]                |
| Hydronic Coil                        | 625 [4,309]                |
| Internal Secondary Pump (ISP)        | 200 [1,378]                |
| Internal Motorized Water Valve (MWV) | 300 [2,068]                |
| Internal Modulating Valve            | 300 [2,068]                |
| Internal Auto Flow Valve             | 400 [2,757]                |

Use the lowest maximum pressure rating when multiple options are combined.
\* Units with MWV have 300 [2068] High Pressure Water switch - 250 [1723] Auto Reset

# Electrical Data – PSC Motor (208/230V) and (265V)

### **PSC Motor (208/230V)**

| Model # | Voltage Code | Comp | ressor | Blower<br>Motor | Pump<br>Option | Total Unit | Min<br>Circuit | Max Fuse |
|---------|--------------|------|--------|-----------------|----------------|------------|----------------|----------|
|         | "G"          | RLA  | LRA    | FLA             | FLA            | FLA        | Amps           | Amps     |
| TSL09   |              | 3.7  | 22     | 0.8             | 0.0            | 4.5        | 5.5            | 15       |
| 13203   |              | 5.7  | 22     | 0.0             | 0.6            | 5.2        | 6.1            | 15       |
| TSL12   |              | 4.6  | 30     | 0.8             | 0.0            | 5.5        | 6.6            | 15       |
| ISLIZ   |              | 4.0  | 30     | 0.6             | 0.6            | 6.1        | 7.3            | 15       |
| TSL15   |              | 5.6  | 29     | 1.6             | 0.0            | 7.2        | 8.6            | 15       |
| ISLIS   |              | 5.0  | 29     | 1.0             | 0.6            | 7.8        | 9.2            | 15       |
| TSL18   | 208/230-60-1 | 6.6  | 33     | 1.6             | 0.0            | 8.2        | 9.9            | 15       |
| ISLIO   | 200/230-00-1 | 0.0  |        | 1.0             | 0.6            | 8.8        | 10.5           | 15       |
| TSL24   |              | 12.8 | 58.3   | 2.7             | 0.0            | 15.5       | 18.7           | 30       |
| 13L24   |              | 12.0 | 36.3   | 2.7             | 0.6            | 16.1       | 19.3           | 30       |
| TSL30   |              | 12.8 | 64     | 2.7             | 0.0            | 15.5       | 18.7           | 30       |
| 13130   | _            | 12.0 | 04     | 2.1             | 0.6            | 16.1       | 19.3           | 30       |
| TSL36   |              | 14.1 | 77     | 3.0             | 0.0            | 17.1       | 20.6           | 30       |
| 13136   |              | 14.1 | 11     | 3.0             | 0.6            | 17.7       | 21.3           | 35       |

### PSC Motor (265V)

| Model# | Voltage Code | Compressor |     | Blower<br>Motor | Pump<br>Option | Total Unit | Min<br>Circuit | Max Fuse |
|--------|--------------|------------|-----|-----------------|----------------|------------|----------------|----------|
|        | "E"          | RLA        | LRA | FLA             | FLA            | FLA        | Amps           | Amps     |
| TSL09  |              | 3.5        | 22  | 0.8             | 0.0            | 4.3        | 5.2            | 15       |
| 13209  |              | 3.5        | 22  | 0.6             | 0.6            | 5.0        | 5.8            | 15       |
| TSL12  |              | 3.9        | 23  | 0.8             | 0.0            | 4.7        | 5.7            | 15       |
| ISLIZ  |              | 3.9        | 23  | 0.8             | 0.6            | 5.3        | 6.3            | 15       |
| TSL15  |              | 5.0        | 28  | 1.6             | 0.0            | 6.6        | 7.8            | 15       |
| ISLIS  |              |            |     |                 | 0.6            | 7.2        | 8.5            | 15       |
| TSL18  | 265-60-1     | 5.6        | 28  | 1.6             | 0.0            | 7.2        | 8.6            | 15       |
| ISLIO  | 203-00-1     | 5.0        |     |                 | 0.6            | 7.8        | 9.2            | 15       |
| TSL24  |              | 9.6        | 54  | 2.0             | 0.0            | 11.6       | 14.0           | 20       |
| 13124  |              | 9.0        | 54  |                 | 0.6            | 12.2       | 14.6           | 20       |
| TSL30  |              | 40.0       | 60  | 2.0             | 0.0            | 12.9       | 15.6           | 25       |
| 13130  |              | 10.9       | 00  |                 | 0.6            | 13.5       | 16.3           | 25       |
| TSL36  |              | 12.2       | 72  | 2.9             | 0.0            | 15.1       | 18.2           | 30       |
| 13230  |              |            |     |                 | 0.6            | 15.7       | 18.8           | 30       |

# Electrical Data – CV ECM Motor (208/230V) and (265V)

### **CV ECM Motor (208/230V)**

| Model # | Voltage Code | Compressor |       | Blower<br>Motor | Pump<br>Option | Total Unit | Min<br>Circuit | Max Fuse<br>Amps |
|---------|--------------|------------|-------|-----------------|----------------|------------|----------------|------------------|
|         | G            | RLA        | LRA   | FLA             | FLA            | ILA        | Amps           | Allips           |
| TSL09   |              | 3.7        | 22    | 1.5             | 0.0            | 5.2        | 6.1            | 15               |
| 13203   |              | 5.7        | 22    | 1.5             | 0.6            | 5.8        | 6.8            | 15               |
| TSL12   |              | 4.6        | 30    | 1.5             | 0.0            | 6.1        | 7.3            | 15               |
| ISLIZ   |              | 4.0        | 30    | 1.5             | 0.6            | 6.8        | 7.9            | 15               |
| TSL15   |              | 5.6        | 29    | 2.6             | 0.0            | 8.2        | 9.6            | 15               |
| ISLIS   |              | 5.0        |       |                 | 0.6            | 8.8        | 10.2           | 15               |
| TCI 40  |              | 6.6        | .6 33 | 2.6             | 0.0            | 9.2        | 10.9           | 15               |
| TSL18   | 208/230-60-1 | 0.0        |       |                 | 0.6            | 9.8        | 11.5           | 15               |
| TSL24   |              | 12.8       | 50.0  | 8.3 2.6         | 0.0            | 15.4       | 18.6           | 30               |
| 13L24   |              | 12.0       | 30.3  |                 | 0.6            | 16.0       | 19.2           | 30               |
| TSL30   |              | 12.8       | 64    |                 | 0.0            | 16.7       | 19.9           | 30               |
| 13L30   |              | 12.8       | 04    | 3.9             | 0.6            | 17.3       | 20.5           | 30               |
| TC1 2C  |              | 14.1       | 77    | F 0             | 0.0            | 19.3       | 22.8           | 35               |
| TSL36   |              |            |       | 5.2             | 0.6            | 19.9       | 23.5           | 35               |

### CV ECM Motor (265V)

| Model# | Voltage Code | Compressor |      | Blower<br>Motor | Pump<br>Option | Total Unit | Min<br>Circuit | Max Fuse |
|--------|--------------|------------|------|-----------------|----------------|------------|----------------|----------|
|        | "E"          | RLA        | LRA  | FLA             | FLA            | FLA        | Amps           | Amps     |
| TSL09  |              | 3.5        | 22   | 1.4             | 0.0            | 4.9        | 5.8            | 15       |
| 13209  |              | 3.5        | 22   | 1.4             | 0.6            | 5.5        | 6.4            | 15       |
| TSL12  |              | 3.9        | 23   | 1.4             | 0.0            | 5.3        | 6.2            | 15       |
| ISLIZ  |              | 3.9        | 23   | 1.4             | 0.6            | 5.9        | 6.9            | 15       |
| TSL15  |              | 5.0        | 28   | 2.1             | 0.0            | 7.1        | 8.4            | 15       |
| ISLIS  |              |            |      |                 | 0.6            | 7.7        | 9.0            | 15       |
| TSL18  | 265-60-1     | 5.6        | 6 28 | 2.1             | 0.0            | 7.7        | 9.1            | 15       |
| ISLIO  | 203-00-1     | 5.0        |      |                 | 0.6            | 8.3        | 9.7            | 15       |
| TSL24  |              | 9.6        | 54   | 2.1             | 0.0            | 11.7       | 14.1           | 20       |
| 13124  |              | 9.0        | 54   |                 | 0.6            | 12.3       | 14.7           | 20       |
| TSL30  |              | 40.0       | 60   | 0.0             | 0.0            | 14.1       | 16.8           | 25       |
| 13130  | 10.9         | 60         | 3.2  | 0.6             | 14.7           | 17.5       | 25             |          |
| TSL36  |              | 12.2       | 72   | 4.7             | 0.0            | 16.9       | 20.0           | 30       |
| 13230  |              |            |      |                 | 0.6            | 17.5       | 20.6           | 30       |

# Electrical Data – CT ECM Motor (208/230V) and (265V)

### **CT ECM Motor (208/230V)**

| Model # | Voltage Code | Compressor |      | Blower<br>Motor | Pump<br>Option | Total Unit | Min<br>Circuit | Max Fuse<br>Amps |
|---------|--------------|------------|------|-----------------|----------------|------------|----------------|------------------|
|         | G            | RLA        | LRA  | FLA             | FLA            | ILA        | Amps           | Allips           |
| TSL09   |              | 3.7        | 22   | 2.3             | 0.0            | 6.0        | 6.9            | 15               |
| 13209   |              | 5.7        | 22   | 2.5             | 0.6            | 6.6        | 7.6            | 15               |
| TSL12   |              | 4.6        | 30   | 2.3             | 0.0            | 6.9        | 8.1            | 15               |
| 13612   |              | 4.0        | 30   | 2.3             | 0.6            | 7.6        | 8.7            | 15               |
| TSL15   | 5.0          | 5.6        | 29   | 2.5             | 0.0            | 8.1        | 9.5            | 15               |
| 13113   |              | 5.0        |      |                 | 0.6            | 8.7        | 10.1           | 15               |
| TCI 40  |              | 0.0        | 33   | 2.5             | 0.0            | 9.1        | 10.8           | 15               |
| TSL18   | 208/230-60-1 | 6.6        |      |                 | 0.6            | 9.7        | 11.4           | 15               |
| TSL24   |              | 12.8       | 58.3 | 4.3             | 0.0            | 17.1       | 20.3           | 30               |
| 13L24   |              | 12.0       |      |                 | 0.6            | 17.7       | 20.9           | 30               |
| TSL30   |              | 40.0       | 64   | 4.3             | 0.0            | 17.1       | 20.3           | 30               |
| 13L30   |              | 12.8       | 64   |                 | 0.6            | 17.7       | 20.9           | 30               |
| TOLOG   | 1            | 14.1       | 77   | 6.1             | 0.0            | 20.2       | 23.7           | 35               |
| TSL36   |              |            |      |                 | 0.6            | 20.8       | 24.4           | 35               |

### CT ECM Motor (265V)

| Model # | Voltage Code | Compressor |        | Blower<br>Motor | Pump<br>Option | Total Unit | Min<br>Circuit | Max Fuse<br>Amps |
|---------|--------------|------------|--------|-----------------|----------------|------------|----------------|------------------|
|         | -            | RLA        | LRA    | FLA             | FLA            | FLA        | Amps           | Allips           |
| TSL09   |              | 3.5        | 22     | 2.3             | 0.0            | 5.8        | 6.7            | 15               |
| 13203   |              | 3.3        | 22     | 2.5             | 0.6            | 6.4        | 7.3            | 15               |
| TSL12   |              | 3.9        | 23     | 2.3             | 0.0            | 6.2        | 7.1            | 15               |
| ISLIZ   |              | 3.9        | 23     | 2.3             | 0.6            | 6.8        | 7.8            | 15               |
| TSL15   |              | 5.0        | 28     | 2.5             | 0.0            | 7.5        | 8.8            | 15               |
| 13113   |              | 5.0        |        |                 | 0.6            | 8.1        | 9.4            | 15               |
| TCI 40  | 205 00 4     | F.0        | 5.6 28 | 2.5             | 0.0            | 8.1        | 9.5            | 15               |
| TSL18   | 265-60-1     | 5.6        |        |                 | 0.6            | 8.7        | 10.1           | 15               |
| TSL24   |              | 9.6        | ΕA     | 54 4.3          | 0.0            | 13.9       | 16.3           | 25               |
| 15L24   |              | 9.6        | 54     |                 | 0.6            | 14.5       | 16.9           | 25               |
| TSL30   |              | 40.0       | 60     | 4.3             | 0.0            | 15.2       | 17.9           | 25               |
| 13130   | 10.9         | 10.9       | 60     |                 | 0.6            | 15.8       | 18.6           | 25               |
| TC1 2C  |              | 12.2       | 70     | 6.1             | 0.0            | 18.3       | 21.4           | 30               |
| TSL36   |              |            | 72     |                 | 0.6            | 18.9       | 22.0           | 30               |

## TSL Series Wiring Diagram Matrix

### All current diagrams can be located online at climatemaster.com. Click 'Commercial Professional'.

- 1. Click 'Products' in the main navigation
- 2. Select 'Vertical Stack Series'
- 3. Select the TSL product series
- 4. Click the Wire Diagrams tab in the middle of the page
- 5. Select your voltage and controls

|                              | Electrical V/Hz/Ph: 208-230/60/1 |                   |            |            |            |            |            |            |  |  |  |  |
|------------------------------|----------------------------------|-------------------|------------|------------|------------|------------|------------|------------|--|--|--|--|
| T-Stat                       |                                  | Non-Communicating |            |            |            |            |            |            |  |  |  |  |
| Unit Controller              |                                  | CXM2 DXM2.5       |            |            |            |            |            |            |  |  |  |  |
| Fan Motor                    | PSC                              | СТІ               | ECM        | PSC        | СТІ        | ECM        | CV         | ECM        |  |  |  |  |
| Unit Size                    | 09-36                            | 09-12             | 15-36      | 15-36      | 9-12       | 15-36      | 9-12       | 15-36      |  |  |  |  |
| STD/MWV<br>(N.C.)/ISP        | 96B0434N01                       | 96B0434N02        | 96B0434N05 | 96B0413N41 | 96B0413N62 | 96B0413N63 | 96B0413N43 | 96B0413N44 |  |  |  |  |
| MWV (N.O.)                   | 96B0434N03                       | 96B0434N04        | 96B0434N06 | 96B0418N04 | 96B0413N66 | 96B0413N67 | 96B0418N01 | 96B0418N02 |  |  |  |  |
| 3-Way MWV                    | 96B0434N08                       | 96B0434N09        | 96B0434N07 | 96B0413N87 | 96B0413N92 | 96B0413N93 | 96B0413N90 | 96B0413N91 |  |  |  |  |
| MOD VALVE                    |                                  |                   |            | 96B0413N05 | 96B0413N68 | 96B0413N69 | 96B0413N06 | 96B0413N07 |  |  |  |  |
| HYBRID<br>MWV N.C.           |                                  | 96B0434N10        | 96B0434N13 |            | 96B0433N11 | 96B0433N12 | 96B0433N09 | 96B0433N10 |  |  |  |  |
| HYBRID<br>MWV N.O.           |                                  | 96B0434N11        | 96B0434N14 |            | 96B0433N13 | 96B0433N14 | 96B0433N15 | 96B0433N16 |  |  |  |  |
| HYBRID 3-WAY<br>VALVE        |                                  | 96B0434N12        | 96B0434N15 |            | 96B0433N27 | 96B0433N28 | 96B0433N25 | 96B0433N26 |  |  |  |  |
| HYBRID 3-WAY<br>VALVE w/ ISP |                                  | 96B0434N12        | 96B0434N15 |            | 96B0433N17 | 96B0433N18 | 96B0433N25 | 96B0433N26 |  |  |  |  |

| Electrical V/Hz/Ph: 208-230/60/1 |            |               |            |            |            |  |  |  |  |  |  |  |
|----------------------------------|------------|---------------|------------|------------|------------|--|--|--|--|--|--|--|
| T-Stat                           |            | Communicating |            |            |            |  |  |  |  |  |  |  |
| Unit Controller                  |            | DXM2.5        |            |            |            |  |  |  |  |  |  |  |
| Fan Motor                        | PSC        | СТІ           | ECM        | CVI        | ЕСМ        |  |  |  |  |  |  |  |
| Unit Size                        | 9-36       | 9-12          | 15-36      | 9-12       | 15-36      |  |  |  |  |  |  |  |
| STD/MWV<br>(N.C.)/ISP            | 96B0413N54 | 96B0413N74    | 96B0413N75 | 96B0413N55 | 96B0413N56 |  |  |  |  |  |  |  |
| MWV (N.O.)                       | 96B0418N14 | 96B0413N76    | 96B0413N77 | 96B0413N15 | 96B0413N16 |  |  |  |  |  |  |  |
| 3-Way MWV                        | 96B0413N94 | 96B0413N97    | 96B0413N98 | 96B0413N95 | 96B0413N96 |  |  |  |  |  |  |  |
| MOD VALVE                        | 96B0413N19 | 96B0413N78    | 96B0413N79 | 96B0413N17 | 96B0413N18 |  |  |  |  |  |  |  |
| HYBRID<br>MWV N.C.               |            | 96B0433N07    | 96B0433N08 | 96B0433N05 | 96B0433N06 |  |  |  |  |  |  |  |
| HYBRID<br>MWV N.O.               |            | 96B0433N31    | 96B0433N32 | 96B0433N29 | 96B0433N30 |  |  |  |  |  |  |  |
| HYBRID 3-WAY<br>VALVE            |            | 96B0433N23    | 96B0433N24 | 96B0433N21 | 96B0433N22 |  |  |  |  |  |  |  |
| HYBRID 3-WAY<br>VALVE w/ ISP     |            | 96B0433N23    | 96B0433N24 | 96B0433N21 | 96B0433N22 |  |  |  |  |  |  |  |

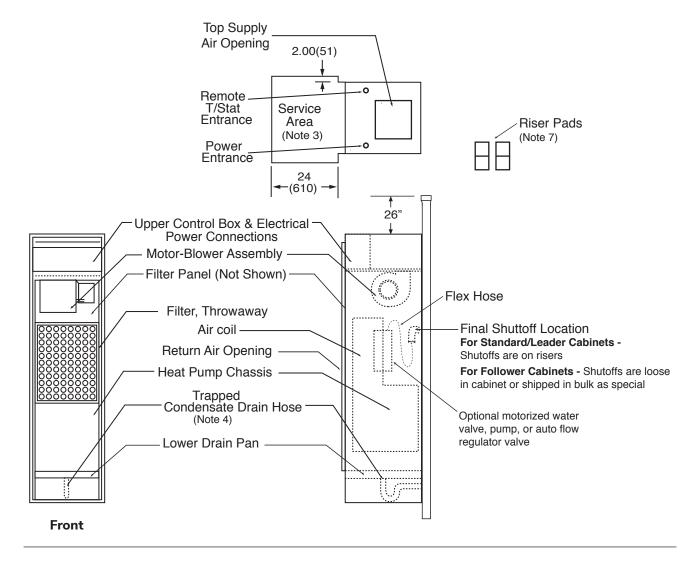
## Standard Unit – Exploded View

#### **MAJOR COMPONENTS**

### 1. TSL Cabinet (Furred-in)

- A Floating condensate drain pan
- B Drain P trap
- C Optional disconnect/ breaker location
- D Upper control box (high voltage terminal blocks optional MPC)
- E Blower assembly/motor
- F Risers (not shown)
- G Shutoffs (not shown)
- H Filter panel
- I Filter

### 2. TSL Chassis

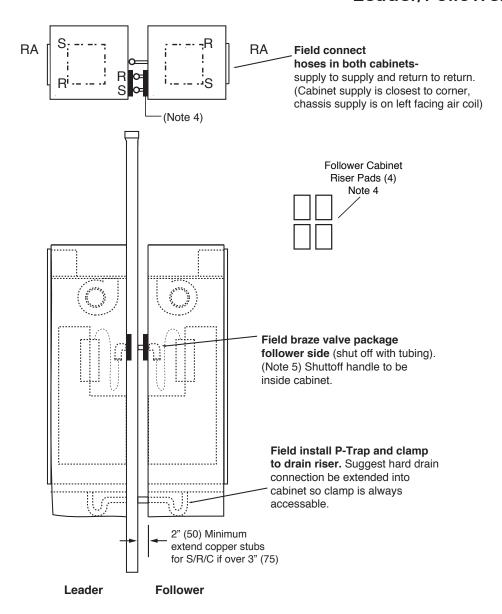

A - Compressor with acoustic enclosure, water coil, reversing valve

- D Capacitor
- E High and low voltage locking quick connectors
- F Air coil
- G Service Connection
- 3. Architectural Acoustic Return Air Panel (G)
  - A Frame
  - B Hinged inner panel
- 4. Hoses (Not Shown)
- 5. Supply Air Grille (Not Shown)
- 6. Thermostat (Not Shown)



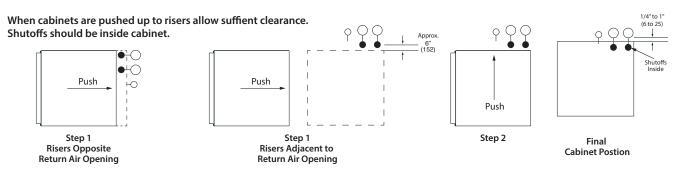
## Hybrid Unit – Exploded View



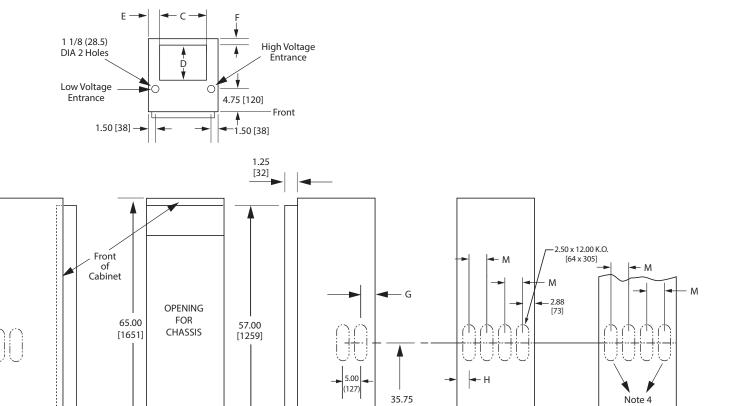



### Notes:

- 1. All dimensions are in inches (mm).
- 2. The return air/control box side is defined as front of cabinet. Riser K.O.'s are on all panels.
- 3. Service area from finished wall and 4"wider than cabinet.
- 4. Contractor to supply ductwork, see blower table for maximum static.
- 5. Installer must apply riser pads to outside of cabinet to seal supply and return slots.




### Leader/Follower Cabinet




### Notes:

- 1. Contractor must meet all fire and building code requirements.
- 2. Size riser diameter for both units GPM.
- 3. Leader/Follower means both units share common riser.
- 4. Install pads on back of follower cabinet to cover slots used for S/R risers.
- 5. Installer must provide crossover water piping from riser to follower unit. Piping must have same pressure rating or higher as riser.
- 6. All dimensions are in inches (mm).



# **D** Cabinet Dimensions



[908]

2.25 x 3.00 K.O.

[57 x 76]

**BACK** 

3.12 [79]

## Notes:

L.H. SIDE

1. All dimensions are in inches (mm).

**FRONT** 

2. Cabinets have riser K.O.'s, all panels. Remove only K.O.'s necessary to configure cabinet. Seal any K.O.'s removed by mistake.

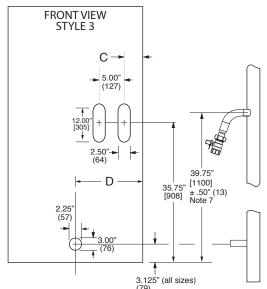
В

R.H. SIDE

- 3. Service area to be width of cabinet and 24" [610] from finished wall.
- 4. For 09-18 cabinet use drain diagonally across from supply and return risers.
- 5. Cabinet model digits 11 and 12 will be E0.

6.00 [152]

| Size  | Α           | В           | С           | D           | Е          | F         | G         | Н         | J           | K           | L           | М          |
|-------|-------------|-------------|-------------|-------------|------------|-----------|-----------|-----------|-------------|-------------|-------------|------------|
| 09-12 | 17.00 [432] | 17.00 [432] | 11.50 [292] | 6.00 [152]  | 2.62 [67]  | .665 [17] | 2.75 [70] | 1.71 [44] | 11.34 [288] | 11.93 [303] | 11.34 [288] | 4.63 [117] |
| 15-18 | 19.25 [489] | 19.00 [483] | 11.50 [292] | 6.00 [152]  | 3.87 [93]  | .665 [17] | 2.75 [70] | 2.83 [72] | 12.08 [307] | 11.93 [303] | 12.08 [307] | 4.63 [117] |
| 24-36 | 24.25 [616] | 24.00 [610] | 12.00 [305] | 12.00 [305] | 6.12 [156] | 1.04 [26] | 2.73 [69] | 2.83 [72] | 12.08 [307] | 11.98 [304] | N/A         | 5.00 [127] |


ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-8000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster inc. All rights reserved 2014.

**BACK** 

(09-18)

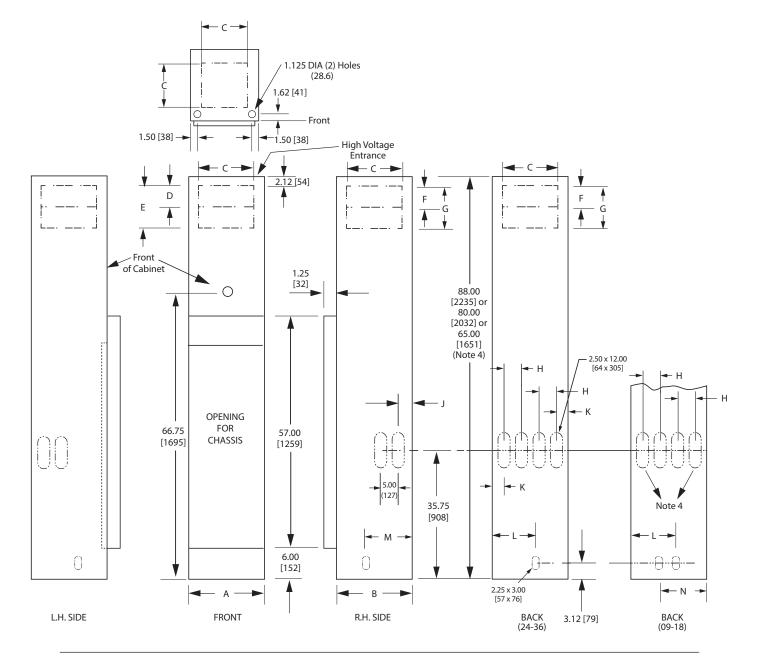
# D Cabinet Slot Dimensions and Riser Arrangements





# **NOTICE!**

NOTICE! Not all styles will stack above or adjacent to each other. (See Note 8).


### Notes:

- 1. Dimensions are inches [mm].
- 2. Style refers to cabinet model digit 9 - riser location.
- 3. Return air side is the front of the cabinet.
- 4. Supply riser is closest to corner.
- 5. Drain is not centered on D1-D4 (09-18) cabinets.
- 6. Slots allow for riser stack expansion and contraction.
- 7. Supply and return riser stub outs are 39.75" (1100) from bottom of cabinet and is not centered vertically in slot. Drain Run-out is 3.12" (79) from bottom of cabinet.
- From floor to floor on one riser stack you can only have; all same style, styles 2 and 5; or styles 3 and 4. For leader/follower units you can only have styles 3 or 4 adjacent to 2 or 5.
- Secure riser stack to building structure.
- 10. Riser should not touch cabinet and shutoff should be inside cabinet.

| Size  | Α           | В           | С         | D           | E          | F         | G           |
|-------|-------------|-------------|-----------|-------------|------------|-----------|-------------|
| 09-12 | 17.00 [432] | 17.00 [432] | 2.75 [70] | 11.93 [303] | 9.18 [233] | 1.71 [44] | 11.34 [288] |
| 15-18 | 19.25 [489] | 19.00 [483] | 2.75 [70] | 11.93 [303] | 9.18 [233] | 2.83 [72] | 12.08 [307] |
| 24-36 | 24.25 [616] | 24.00 [610] | 2.73 [69] | 11.98 [304] | 9.25 [235] | 2.83 [72] | 12.08 [307] |

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, reserved 2014.

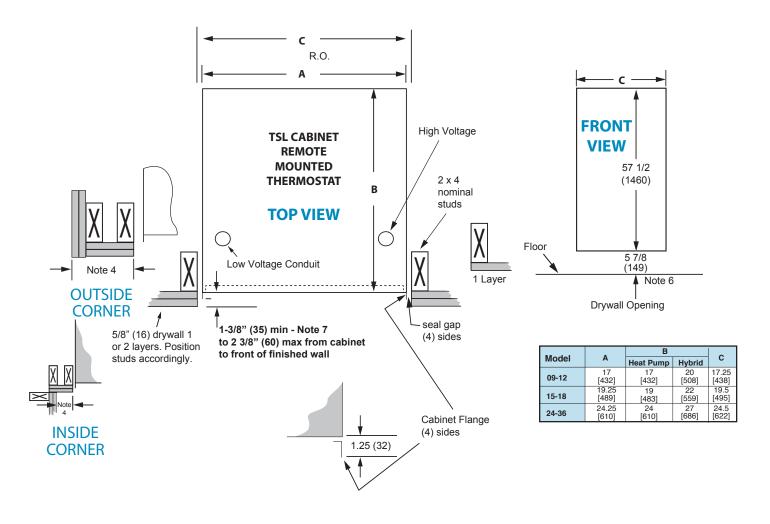
# **E Cabinet Dimensions**



## Notes:

- 1. All dimensions are in inches (mm).
- 2. Cabinets have supply air and riser K.O.'s, all panels. Remove only K.O.'s necessary to configure cabinet. Seal any K.O.'s removed by mistake.
- 3. Service area to be width of cabinet plus 4" [102] and 24" [610] from finished wall.
- 4. For 9-18 cabinet use drain diagonally across from supply and return risers.

| Size  | Α           | В           | С           | D/F        | E/G         | Н          | J          | K         | L           | M           | N           |
|-------|-------------|-------------|-------------|------------|-------------|------------|------------|-----------|-------------|-------------|-------------|
| 09-12 | 17.00 [432] | 20.00 [508] | 12.00 [305] | 6.00 [152] | 12.00 [305] | 4.63 [117] | 2.75 [70]  | 2.09 [53] | 11.34 [288] | 11.93 [303] | 11.34 [288] |
| 15-18 | 19.25 [489] | 22.00 [559] | 14.00 [356] | 6.00 [152] | 14.00 [356] | 4.63 [117] | 2.75 [70]  | 2.84 [72] | 12.09 [307] | 11.93 [303] | 12.09 [307] |
| 24-36 | 24.25 [616] | 27.00 [686] | 16.00 [406] | 8.00 [203] | 16.00 [406] | 5.00 [127] | 4.23 [108] | 2.83 [72] | 12.08 [307] | 13.48 [342] | N/A         |


ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-8000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster inc. All rights reserved 2014.

# E Cabinet Slot Dimensions and Riser Arrangements



ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and ont form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

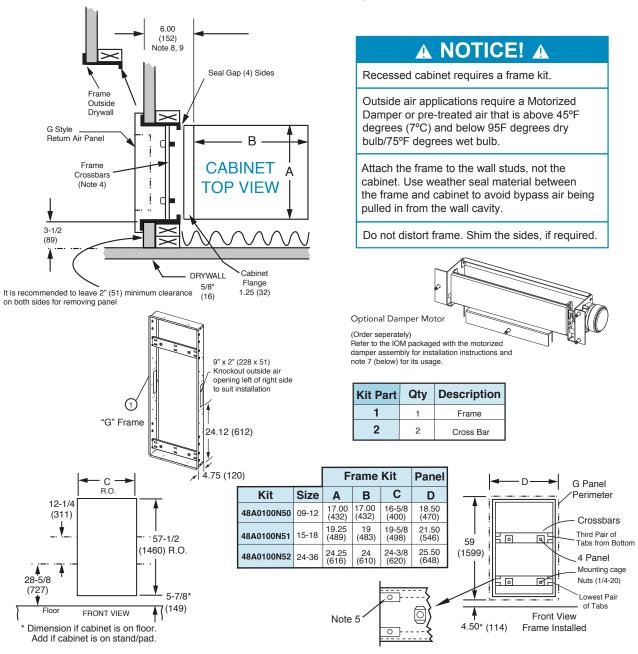
# Typical Cabinet with "G" Panel Installation





All dimensions are in inches (mm).

- Cabinet configuration will determine slab core drilling location and walls surrounding cabinet.
- Recommend stud walls surrounding cabinet. Drywall and studs should not be attached or contacting cabinet for best sound attenuation. Where possible fill gaps with sound absorbing material. Use iso pad under cabinet. Secure cabinet to floor in two places at back.
- Return air panel (not shown) overlaps rough opening, allow minimum of 3 1/2" (89) dry wall to corner. Do not caulk G panel to wall.
- Installer supplied top duct should connect with flex boot.
- If cabinet stand or ISO pad is used add to dimension.
- For 2"(50) filter set cabinet 2"(50) minimum from front of drywall.

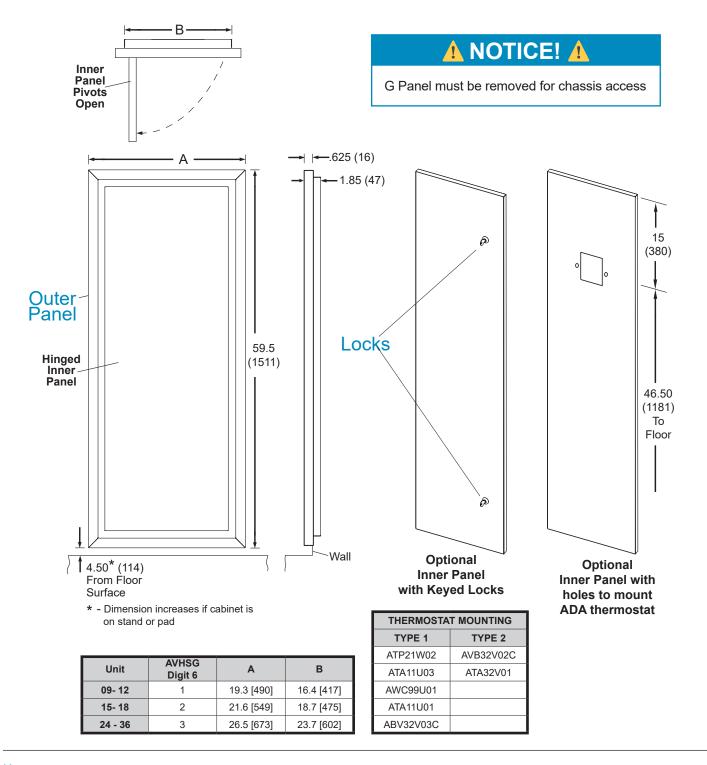

NOTICE!

Seal between studs and cabinet flanges with weather tight foam material to prevent wall cavity air from infiltrating unit or room.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, reserved 2014.

LC1007 - 77 Page \_\_\_

# Typical Recessed Cabinet with "G" Panel and Frame Installation




#### Notes:

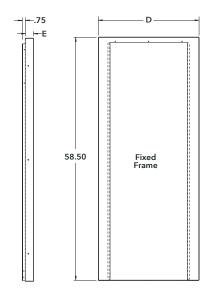
- 1. The cabinet configuration will determine the slab core drilling location and the wall surrounding the cabinet.
- 2. Stud walls surrounding the cabinet are recommended. For better sound attenuation, the drywall studs should not be attached to or contacting the cabinet.
- 3. The "G" style return air panel overlaps its rough opening. Allow a minimum of 3.5" (89) of drywall to a corner. Do not caulk the return air panel to the wall.
- 4. The "G" panel attaches to the cross bars of the frame kit. The cabinet must be recessed behind the wall.
- 5. For air filter access, pivot the hinged inner panel and open the snapped filter access panel.
- 6. For chassis access,
  - a. Remove the entire G-Panel
  - b. Remove the (2x) cross bars of the frame kit
  - c. Remove the cabinet's filter panel
  - d. Slide out the chassis
- 7. When untreated outside air will be utilized, the 48A0100N04 motorized damper must be used. The mixed air temperature must be no lower than 45°F degrees (7°C), must be no higher than 95°F DB/75°F WB, and must not exceed 20% of the cabinets total CFM output.
- 8. For a 2" filter, set the cabinet 6.25" (158) from the front of the dry wall.
- 9. If the drywall flanges (Qty. 4) are removed, the cabinet can be set 1" (25) closer to the finished drywall.
- 10. All dimensions are inches (mm) with all nominal 2" x 4" studs being 1.5" (38) x 3.5" (89).

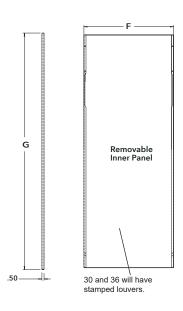
ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, inc. All rights reserved 2014

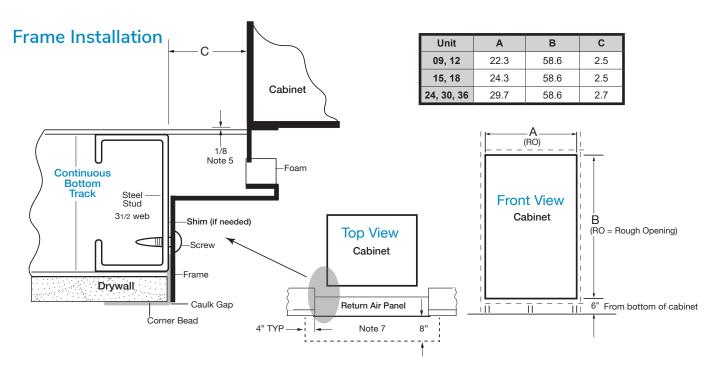
# Hinged "G" Style Return Air Panel – AVHSG Series



### Notes:


- 1. Dimensions are in inches (mm).
- 2. Panel painted polar ice or bright white.
- 3. Inner panel pivots open 90°, for filter replacement without removing panel.
- 4. Shipped as left-hand pivot, but can be field converted to right hand. Cannot convert panel with grille or ADA options.
- 5. Optional locks and/or ADA mounted thermostats available.
- 6. Optional frame for recessed cabinet applications and damper assembly available. See Recessed Cabinet.
- 7. Please review the ADA knockout Type 1 and 2 thermostat table to ensure compatibility between the panel and thermostat selected.


# "L" Style (Flush Mounting) Return Air Panel – AVHRL Series


# **▲** NOTICE! **▲**

Frame is attached to studs. Panel is removable for chassis access.

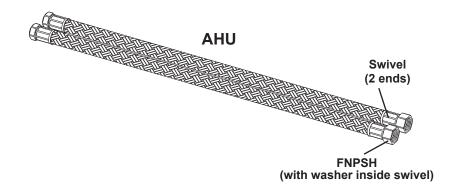
| Unit   | AVHRL<br>Digit 6 | D    | E   | F    | G    |
|--------|------------------|------|-----|------|------|
| 09, 12 | 1                | 22.1 | 2.0 | 19.5 | 55.8 |
| 15, 18 | 2                | 24.1 | 2.0 | 21.5 | 55.8 |
| 24     | 3                | 29.6 | 2.0 | 26.5 | 55.9 |
| 30, 36 | 4                | 29.6 | 2.0 | 26.5 | 55.9 |







#### **Notes:**


- 1. Dimensions are in inches.
- 2. Frame and panel painted bright white.
- 3. Panel is removable for filter replacement or chassis removal.
- 4. Frame ships with cabinet—must be installed while framing.
- 5. Set bottom track 1/8" in front of cabinet.
- 6. Drywall mud is added to the corner bead to produce a smooth finished surface.
- 7. Unobstructed area for required air flow.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

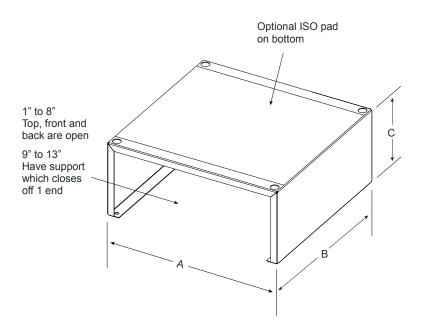
# Hose Kits and Stands

## **AHU Series Hose Kit Specifications:**

- AHU hose kits used for connection with ClimateMaster standard ball valves.
- Designed for vertical high rise water-source heat pump applications.
- Kevlar® reinforced EPDM core with ANSI 302/304 stainless steel outer braid.
- Fire rated materials per ASTM E 84-00 (NFPA 255, ANSI/UL 723 & UBC 8-1).
- Swivel connection provides union between chassis and riser shutoff.
- Brass fittings, stainless steel ferrules.
- Temperature range of 15°F [9°C] to 180°F [82°C]. (Operation below 32°F requires antifreeze)
- Max. working pressure of 400 psi [2756 kPa].
- Min. burst pressure of four times working pressure.



# **Physical Data**


| Unit    | Inside<br>Diameter<br>inches | Length<br>feet [cm] | Working<br>Pressure<br>psi [kPa] | Min. Burst<br>Pressure<br>psi [kPa] | Min. Bend<br>Radius<br>inches [mm] |
|---------|------------------------------|---------------------|----------------------------------|-------------------------------------|------------------------------------|
| 09 - 12 | 0.50                         | 3 [91]              | 400 [2756]                       | 1600 [11024]                        | 3.56 [91]                          |
| 15 - 18 | 0.75                         | 3 [91]              | 400 [2756]                       | 1600 [11024]                        | 3.56 [91]                          |
| 24 - 36 | 1.00                         | 3 [91]              | 400 [2756]                       | 1600 [11024]                        | 4.3 [109]                          |

## **ACST Cabinet Stands**

### Specifications

- 1" to 13" (25 to 330) tall, 1" (25) increments
- 16 Gauge galvanized steel
- Attached to cabinet with 4 screws
- Ships in bulk for field installation.
- Optional ISO pad 0.1" (2.5) thick

| Unit  | Α             | В             | С                      |
|-------|---------------|---------------|------------------------|
| 09-12 | 16.8<br>[427] | 16.2<br>[411] |                        |
| 15-18 | 18.9<br>[480] | 18.3<br>[465] | 1 to 13<br>(25 to 330) |
| 24-36 | 23.9<br>[607] | 23.3<br>[592] |                        |



ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of fits products. The latest version of this document is available at climatemaster.com. © ClimateMaster, reserved 2014.

# Supply Air Openings and Grilles

## Supply Air K. O.'s in Cabinets

| Cabinet<br>Size | Cabinet<br>Height | Front Sides/Back |                    | Тор     |
|-----------------|-------------------|------------------|--------------------|---------|
| C1, C2          | 88                | 12 x 6           | 12 x 12            |         |
| (09, 12)        | 80                | 12 x 6           | 12 x 6 and 12 x 12 | 12 X 12 |
| C3, C4          | 88                | 14 x 6           | and 14 x 14        | 14 x 14 |
| (15, 18)        | 80                | 14 x 6           | 14 x 6 and 14 x 12 | 14 X 14 |
| C5, C7          | 88                | 16 x 8           | 3 and 16 x 16      | 16 x 16 |
| (24, 36)        | 80                | 16 x 6           | 16 x 6 and 16 x 12 | סו א סו |

## Supply Air Grille Openings/sq. in.

| Cabinet            | Number of  | Minimum sq. in.                      | Recommended sq. in.  |
|--------------------|------------|--------------------------------------|----------------------|
| Size               | Openings   | Openings*                            | Openings             |
| C1, C2<br>(09, 12) | 1 or 2     | 144<br>(1 - 12 x 12)<br>(2 - 12 x 6) | 288<br>(2 - 12 x 12) |
| C3, C4<br>(15, 18) | 1, 2, or 3 | 168<br>(1 - 14 x 12)<br>(2 - 14 x 6) | 392<br>(2 - 14 x 14) |
| C5, C7             | 2 or 3     | 384                                  | 512                  |
| (24, 36)           |            | (2 - 16 x 12)                        | (2 - 16 x 16)        |

<sup>\*</sup> Less than minimum sq. in. opening will have higher sound levels than published

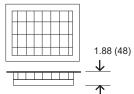
| Nominal     | Double D         | eflection Free A      | rea (sq. ft.)     |
|-------------|------------------|-----------------------|-------------------|
| Grille Size | Deflection<br>0° | Deflection<br>22 1/2° | Deflection<br>45° |
| 12 x 6      | .30              | .28                   | .22               |
| 12 x 12     | .65              | .59                   | .48               |
| 14 x 6      | .40              | .38                   | .33               |
| 14 x 12     | .80              | .71                   | .55               |
| 14 x 14     | .95              | .86                   | .70               |
| 16 x 8      | .61              | .55                   | .44               |
| 16 x 12     | .93              | .85                   | .68               |
| 16 x 16     | 1.25             | 1.12                  | .90               |

### Notes:

- 1. When selecting supply air openings/grilles consider CFM, velocity (throw), added static pressure and sound.
- 2. Other sizes available as special.
- 3. If custom grille sizes are used area should be greater or equal to above.
- 4. If using more than recommended number of opening, total CFM may be reduced or be unstable (PSC or ECM Motor).
- 5. If only top is used, suggest using TSL which are shorter cabinets so that duct will have more space to be designed for static regain.

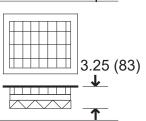
# Supply Air Openings and Grilles

Grilles are shipped loose for field installation after drywall has been finished. Grilles are offered in three different styles, brushed aluminum, painted polar ice or painted bright white to match the return air door standard colors. Overall dimensions - add 1.25" (32) to nominal dimensions.


## **A816GA Series Grilles**

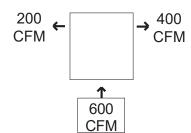
**Single Deflection -** Adjustable vertical blades for controlling horizontal path of discharge air (Left/Right).




### **A816GB Series Grilles**

**Double Deflection -** Adjustable vertical and horizontal blades for controlling horizontal and vertical path of discharge air. (Left/Right and Up/Down) Recommended for all standard applications.




#### **A816GC Series Grilles**

**Double Deflection with Opposed Blade Damper -** Addition of opposed blade damper to grille allows control of air volume (CFM) and path of discharge air. Recommended for applications requiring unequal air flow or side discharge grille(s) with additional top discharge air opening.



**Unequal Air Flow -** Air discharges requiring different air volumes (CFM). Use double deflection with opposed blade damper grilles.

**Top Discharge -** Units are designed to operate against relatively low air resistance (external static). Use of liberal duct sizing is recommended to maximize total unit air flow (CFM). Top duct outlet will offer more resistance to air flow than side outlets on the same cabinet. For top discharge only use TSL Series.



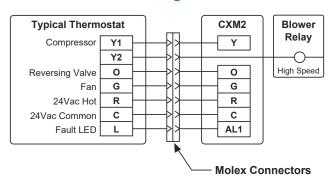
# **⚠** NOTICE! **⚠**

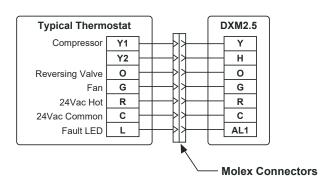
Top air discharge units will require turning vanes and/or a volume damper for proper air flow and balancing, to minimize turbulence. These components must be field furnished and installed in accordance with SMACNA guidelines.

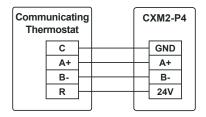
ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest eversion of this document is available at climateMaster.com. © ClimateMaster, reserved 2014.

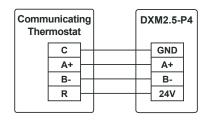
# Thermostats

Whether you're on a tight budget or have interest in the latest technology we have many types of thermostats to meet your project needs. Check out the details of our full thermostat product offering on the <a href="https://example.com/Thermostats">Thermostats & Accessories</a> page of the ClimateMaster website.


Standard thermostats ship stand-a-lone and require field labor to make wiring connections on thermostats. ClimateMaster's A91558 Series adds a 6" whip factory assembled to the thermostat on one end with a 9-pin electrical quick connector on the other end. This is


designed for remote thermostat location applications. Cabinets can be order with 15', 25', or 35' remote thermostat whips. These whips come with the matching 9-pin electrical connector so thermostats can be quickly and easily installed in the field.


Customer supplied thermostats should be approved by ClimateMaster Engineering Department prior to using.


Below are a few examples of how thermostats are wired. Please see TSL and thermostat IOMs for full details.

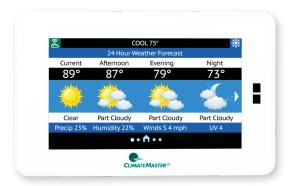
## **Typical Thermostat 24v Wiring**










| Thermostat<br>Assembly with<br>Molex Connector 6"<br>Pigtail | Thermostat<br>Only+ | Remote | Surface | ADA | CXM2 | DXM2.5 | Manual<br>Changeover | Automatic<br>Changeover | Programmable | Digital | Fault Indicator | Setback<br>Override | Fan Speeds | Wi-Fi | Wireless<br>Remote Temp.<br>Sensor |
|--------------------------------------------------------------|---------------------|--------|---------|-----|------|--------|----------------------|-------------------------|--------------|---------|-----------------|---------------------|------------|-------|------------------------------------|
| A9155801                                                     | ATA11U01            | Х      | Х       | Х   | Х    | Χ      | X                    | Х                       | -            | Х       | Х               | -                   | 1          | -     | -                                  |
| A9155802                                                     | ATA11U03            | Х      | Х       | Х   | Х    | Х      | Х                    | -                       | -            | Х       | -               | -                   | 2*         | -     | -                                  |
| A9155804                                                     | ATA22U01            | Х      | Х       | Х   | Х    | Χ      | Х                    | Х                       | -            | Х       | Х               | -                   | 2**        | -     | -                                  |
| A9155809                                                     | ATP21W02            | -      | -       | Х   | Х    | Х      | Х                    | Х                       | Х            | Х       | Х               | -                   | 1          | -     | -                                  |
| A9155810                                                     | ATP21W02            | -      | Х       | -   | Х    | Х      | Х                    | Х                       | Х            | Х       | Х               | -                   | 1          | -     | -                                  |
| A9155811                                                     | ATP21W02            | Х      | -       | -   | Х    | Х      | Х                    | Х                       | Х            | Х       | Х               | -                   | 1          | -     | -                                  |
| A9155805                                                     | ATP32U03C           | Х      | Х       | Х   | Х    | Х      | Х                    | Х                       | Х            | Х       | Х               | Х                   | 2**        | -     | -                                  |
| A9155807                                                     | AWC99U01            | Х      | Х       | Х   | Х    | Х      | Х                    | Х                       | Х            | Х       | Х               | Х                   | 2**        | Х     | Х                                  |
| A9155813                                                     | ATA32V01            | Х      | Х       | Х   | Х    | Х      | Х                    | Х                       | -            | Х       | -               | Х                   | 2**        | -     | -                                  |
| A9155814                                                     | AVB32V02C           | Х      | Х       | Х   | Х    | Χ      | Х                    | Х                       | Х            | Х       | Х               | Х                   | 2**        | Х     | Х                                  |
| A9155815                                                     | AVB32V03C           | Х      | Χ       | Х   | Х    | Χ      | Х                    | Х                       | Χ            | Χ       | Х               | Х                   | 2**        | Χ     | Х                                  |

<sup>\*</sup>Fan speed change automatic through thermostat Y2 signal.

\*\* - Manual speed change

Note: A9155809 for ADA, A9155811 for Remote Mount.

# **Thermostats**



# **AWC COMMUNICATING THERMOSTAT (AWC99U01)**

5.1" w x 3.2" h x 0.9" d

- iGate® 2 Communicating (AWC) Thermostat
- Wi-Fi Enabled
- Remote troubleshooting and diagnosis
- Color Touch Screen
- 7-day Programmable
- Humidity control

# CM 500 (AVB32V03C)

5.25" w x 4" h x 1.1" d

- 7-day Programmable
- Wi-Fi Enabled
- Color Touch Screen
- Humidity control
- For use with water source heat pumps
- Mobile and web apps available for remote monitoring
- California Title 24 compliant





# CM 300 (AVB32V02C)

3.2" w x 3.2" h x 0.9" d

- 7-day Programmable
- Wi-Fi Enabled
- Humidity control
- For use with water source heat pumps
- Mobile and web apps available for remote monitoring
- California Title 24 compliant

# CM 100 (ATA32V01)

3.1" w x 3.1" h x 1.0" d

- Auto Changeover Automatically switches between cooling or heating
- LED indicator light glows green or red to indicate cooling or heating
- Can control temperature to within 1° of set point
- 3-stage heating and 2-stage cooling for use with heat pump
- All programming and set points stored in nonvolatile memory
- Key pad Locking set points can only be adjusted by authorized individuals when this feature is on
- Large number display, extremely easy to operate and program



# **TSL Cabinet Options**

## **Optional Cabinet Disconnect Switch**

Located on control box access door. Can be accessed through slot in "G" Panel Frame. Classified as motor disconnect. See Cabinet decoder.

## **Optional Cabinet Circuit Breaker**

Located on control box access door. Can be accessed through slot in "G" Panel Frame. All 208/230V and 265V 15 and 20 amp classified as HACR breaker. 265V 25 amp and higher classified as supplemental breaker. See Cabinet decoder.

## Optional Thermostat Wire Harness (WHIP)

Low voltage wire harness 15, 25, or 35 foot ending with 9-Pin Molex quick connector. Exits cabinet on top, left front corner. Thermostat cable is rated CL-2. See Cabinet decoder. Can be encased in BX conduit as special, contact factory.

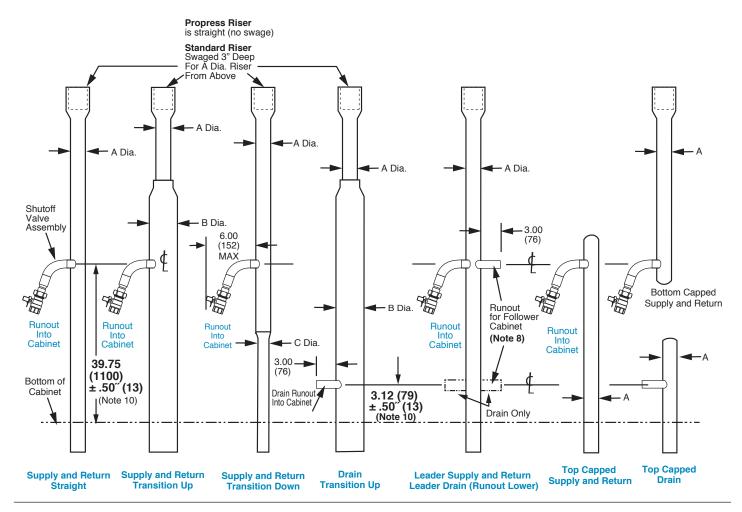
## **Optional Premium Seal**

Located on cabinet filter panel, seal is upgraded to extruded rubber gasket for durability and long life.

## **Optional 2" Filter and Holder**

2" filter improves air filtration and reduces maintenance.

## Accessory Filters (Not available for every application - check blower table for ESP)


1" (25 mm) thick, MERV 8, and MERV 11

2" (50 mm) thick, MERV 8, MERV 11, and MERV 13

## **TSL Accessory Filter ESP Table**

|       |      | TSL with E | ECM Motor |           |               | Accessory Filter Initial ESP |      |      |      |         |  |
|-------|------|------------|-----------|-----------|---------------|------------------------------|------|------|------|---------|--|
| Model | Size | Max CFM    | Max ESP   | coil area | face velocity |                              |      | Mer  |      | Merv 13 |  |
| Model | 0120 | Mux Of W   | Max Loi   | sq ft     | fps           | 1"                           | 2"   | 1"   | 2"   | 2"      |  |
| D1    | 9    | 450        | 0.4       | 2.5       | 180           | 0.08                         | 0.06 | 0.09 | 0.08 | 0.15    |  |
| D2    | 12   | 450        | 0.4       | 2.5       | 180           | 0.08                         | 0.06 | 0.09 | 0.08 | 0.15    |  |
| D3    | 15   | 700        | 0.5       | 2.5       | 280           | 0.17                         | 0.14 | 0.22 | 0.15 | 0.25    |  |
| D4    | 18   | 800        | 0.5       | 2.5       | 320           | 0.20                         | 0.16 | 0.29 | 0.19 | 0.28    |  |
| D5    | 24   | 950        | 0.6       | 3.4       | 280           | 0.17                         | 0.14 | 0.22 | 0.15 | 0.25    |  |
| D6    | 30   | 1150       | 0.6       | 3.4       | 340           | 0.22                         | 0.16 | 0.33 | 0.20 | 0.30    |  |
| D7    | 36   | 1350       | 0.6       | 3.4       | 400           | 0.26                         | 0.21 | 0.44 | 0.24 | 0.34    |  |

# Riser Definitions



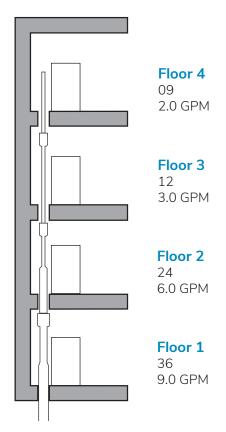
|   | Riser Diameter (in)                         |      |      |      |      |      |   |  |  |  |  |  |  |  |
|---|---------------------------------------------|------|------|------|------|------|---|--|--|--|--|--|--|--|
| Α | <b>A</b> 1.00 1.25 1.50 2.00 2.50 3.00 4.00 |      |      |      |      |      |   |  |  |  |  |  |  |  |
| В | 1.25                                        | 1.50 | 2.00 | 2.50 | 3.00 | -    | - |  |  |  |  |  |  |  |
| С | -                                           | 1.00 | 1.25 | 1.50 | 2.00 | 2.50 | - |  |  |  |  |  |  |  |

#### Notes:

- You must know water flow direction to determine if cabinet requires transition up or down.
- 2. Transitions can only change by one diameter (1" to 11/4", 11/4" to 11/2", etc.)
- 3. Riser transition couplings and run-outs are factory brazed.
- 4. All risers are factory pressure tested.
- 5. Standard riser diameters are nominal 1", 1¼", 1½", 2", 2½", and 3". Please consult the factory on pricing for nominal 4" water tubing.
- 6. Copper Type M and L available (4" L only).
- 7. Drain riser insulated standard. Insulation is optional for supply and return
- 8. Leader riser For follower cabinet riser ball valve assemblies, 12" of straight copper are provided for field connection to the leader riser. Assembly to be cut to length and field brazed. In applications where more than 12" of straight copper is needed, copper and fittings to be field provided.
- 9. Standard ball valves have NPSH threads for connection to AHU hoses (1/2" for D/E1-2 (sizes 09-12); 3/4" for D/E3-4 (sizes 15-18); 1" for D/E5-7 (sizes 24-36)).
- 10. If cabinet stand or thick ISO pad is used, at installation add height/thickness to shutoff valve and drain run-out height. Verify riser shutoff height with plans before brazing.

Note: ClimateMaster units with motorized valve option have water high pressure switches. Do not design riser stack where switch will not reset (trip - 300 PSI; Reset - 250 PSI).




Standard Valve (Cabinet Digit 10 = 5) Used with AHU Style Hoses

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warrantees and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster inc. All rights reserved 2014 inc. All rights reser

# Riser GPM Definitions and Sizing

Riser GPM requirements and individual Unit GPM requirements are necessary to select the proper Riser Piping diameters. Refer to this page to determine GPM requirement, then refer to Riser Diameter Sizing Table to determine Riser Piping diameters.

Example is for bottom supply (upward flow) - bottom return (downward flow) system feed loop, both supply and return will be same GPM. GPM's are dependent upon unit load and system loop water temperatures. Please refer to Performance Charts for individual Unit GPM requirements.



**Unit GPM (UGPM)** = Required gallons per minute from "Performance Charts," or GPM used to calculate unit capacity.

Note: For factory installed AFR check Flow Rate available (See Table)

**Total Riser GPM (TRGPM)** = The total GPM's required for all units on each riser.

**Total GPM Per Floor (TGF)** = Total GPM minus the sum of Unit GPM from all floors above or below, depending on direction of flow.

**Example:** Four floors, Consisting of units sizes TSL36, TSL24, TSL12 and TSL09, as shown in diagram. UGPM's are 9.0, 6.0, 3.0 and 2.0 respectively.

**TRGPM** = 9.0 + 6.0 + 3.0 + 2.0 = 20 GPM.

# **Upward Flow:**

Floor 1: TGF = 20 Add all floor GPM's (TRGPM). Floor 2: TGF = 11 Total GPM minus floor 1 GPM.

Floor 3: TGF = 5 Total GPM minus floors 1 and 2 GPM's.

Floor 4: TGF = 2 Total GPM minus floors 1, 2, and 3 GPM's.

## **Downward Flow:**

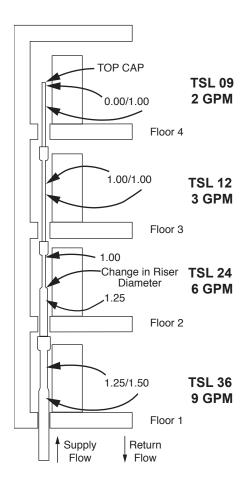
Floor 4: TGF = 20 Add all floor GPM's (TRGPM).

Floor 3: TGF = 18 Total GPM minus floor 4 GPM.

Floor 2: TGF = 15 Total GPM minus floors 1 and 2 GPM's.

Floor 1: TGF = 9 Total GPM minus floors 1, 2, and 3 GPM's.

|   | Auto-Flow Regulator (US GPM) Code |            |            |            |            |            |            |  |  |  |
|---|-----------------------------------|------------|------------|------------|------------|------------|------------|--|--|--|
|   | 5/8 S                             | weat       |            | 7.         | 8 SWE      | AT .       |            |  |  |  |
|   | Unit<br>09                        | Unit<br>12 | Unit<br>15 | Unit<br>18 | Unit<br>24 | Unit<br>30 | Unit<br>36 |  |  |  |
| С | 1.5                               | _          | -          | -          | -          | _          | _          |  |  |  |
| D | 2.0                               | 2.0        | -          | -          | -          | _          | _          |  |  |  |
| Е | 2.5                               | 2.5        | 2.5        | -          | -          | _          | _          |  |  |  |
| F | 3.0                               | 3.0        | 3.0        | 3.0        | -          | _          | _          |  |  |  |
| G | _                                 | 3.5        | 3.5        | 3.5        | _          | _          | _          |  |  |  |
| н | -                                 | _          | 4.0        | 4.0        | 4.0        | _          | _          |  |  |  |
| J | _                                 | _          | _          | 5.0        | 5.0        | 5.0        | _          |  |  |  |
| K | _                                 | _          | _          | _          | 6.0        | 6.0        | 6.0        |  |  |  |
| L | -                                 | _          | -          | -          | 7.0        | 7.0        | 7.0        |  |  |  |
| М | _                                 | _          | _          | _          | _          | 8.0        | 8.0        |  |  |  |
| N |                                   | _          | _          | _          | _          | _          | 9.0        |  |  |  |
| Р | _                                 | _          | _          | _          | _          | _          | 10.5       |  |  |  |


ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest eversion of this document is available at climateMaster.com. © ClimateMaster, reserved 2014.

# Riser Diameter Sizing

Refer to Riser GPM Definitions and Sizing for the prefix to this example.

Each TSL Vertical Stack unit has three riser pipes: supply, return, and drain. The following example will be for Supply and Return riser pipe (from the top floor to the bottom floor), supply flow up and return flow down.

Note: If flows are both same direction, you will have to create two table 3's, Supply and Return



From Table 1 (below) determine the proper riser diameter needed to satisfy the required GPM's at each unit. Refer to Table 2 (below) for a summary.

**Top Cap** - Top half of riser is eliminated and sealed. **Bottom Cap** - Bottom half of riser is eliminated and sealed.

The following nomenclature is used to designate the diameters at the top (always first) and bottom of each unit.

**0.00/1.00** - Indicates top cap/1" bottom.

**1.00/1.00** - Indicates 1" top/bottom.

**1.00/1.25** - Indicates 1" top/1.25" bottom.

**1.25/1.50** - Indicates 1.25" top/1.50"bottom.

(from this we develop Table 3)

Note: Transition risers limited to 1 nominal diameter size larger or smaller within each floor (cabinet).

Table 1

| Maximum GPM               | 10 | 16     | 23     | 48 | 80     | 135 | 190 |
|---------------------------|----|--------|--------|----|--------|-----|-----|
| Nominal Riser<br>Diameter | 1" | 1-1/4" | 1-1/2" | 2" | 2-1/2" | 3"  | 4"  |

Max GPM for 1" to 1½" sized for 4 FT per second velocity Max GPM for 2" to 4" sized for 5.5 FT per second velocity

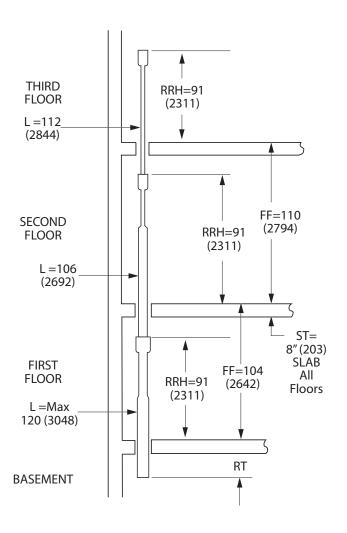
Note: Max GPM per NABB recommendation. Never exceed 6.5 FPS, excessive noise and abrasion will occur.

Table 2

| Floor | TGF | Diameter From<br>Table 1 |
|-------|-----|--------------------------|
| 4     | 2   | 1" [25.4]                |
| 3     | 5   | 1" [25.4]                |
| 2     | 11  | 1.25" [31.8]             |
| 1     | 20  | 1.50" [38.1]             |

Table 3

| Nomenclature<br>per Unit | Description                |
|--------------------------|----------------------------|
| 0.00/1.00                | Top Cap, w/1" Bot Feed     |
| 1.00/1.00                | 1" Full Length Riser       |
| 1.00/1.25                | 1" Top, 1.25" to 1st Floor |
| 1.25/1.50                | 1.25" Top, 1.50" Bottom    |


**Table 4** (From IMC-2012 Table 307.2.2)

| Drain Diameter | Max Tonnage |
|----------------|-------------|
| 1" [25 mm]     | 40          |
| 1¼" [32 mm]    | 90          |
| 1½" [38 mm]    | 125         |
| 2" [51 mm]     | 250         |

Values from Table 3 are to be entered on the Riser Piping Schedule of EZ order. Top diameter must match bottom diameter of floor above.

To calculate drain riser diameter, add up unit tonnage and use Table 4. Example has 634 tons, so 1" diameter is adequate.

# Swage Riser Length Definitions and Sizing



Total Riser Length (L) for same height cabinets on every floor = FF of floor below + 2'' (51)

Note: If cabinet heights are mixed then L must be calculated.

**Floor To Floor Height (FF):** Distance from top of slab to top of above slab.

Room Riser Height (RRH): = 91 (2311) for all TSL's.

**Riser Tail (RT):** Length of riser extending down from the cabinet. Riser tail piece must extend a minimum of 5'' (127) below slab. RT = L - RRH

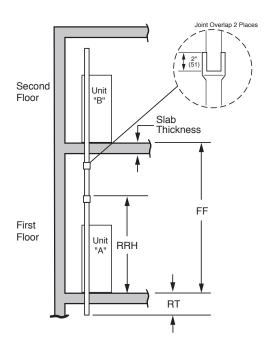
**Slab thickness (ST):** Slab thickness plus and additional material added to slab prior to setting cabinets.

Riser insertion into swage = 2" (51)

# Calculating Riser Dimensions for Example: 8" finished slab all floors

FIRST FLOOR - (Pick L depending how far below slab wanted)

SECOND FLOOR


THIRD FLOOR

### Notes:

- 1. For calculating riser length do not include ISO pad or stand, except remember that below (B) on any floor should be 5 (127) or more for ease of brazing. For risers installed before cabinet—ISO pad or stand does affect riser shutoff valve and drain stub setting dimension from floor, add to 39.75 (1100) and 3.12 (79). Check plans before brazing.
- 2. If riser maximum is exceeded or RT is less than slab + 5" (127) must use extension, see riser extension sizing.
- 3. Complete all core drilling before assembling riser stack.
- 4. Set from lowest floor up.
- 5. Risers ship in bulk. Can ship by floor as special.
- 6. Secure riser stack to building structure and use expansion fittings as required.
- 7. For calculating and entering on EZ, use full length even if top or bottom is capped.
- 8. Dimensions are inches (mm).

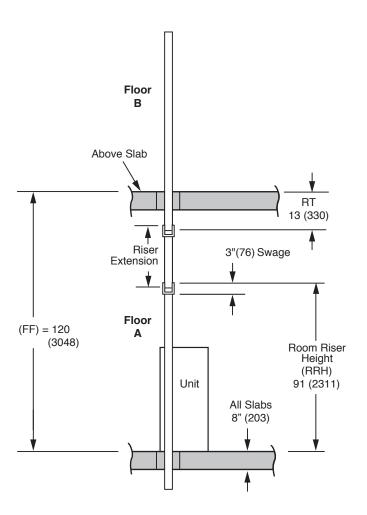
ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster, inc. All rights reserved 2014

# Swage Riser Extension Definitions and Sizing



**Riser Extension Length:** Start with the floor to floor Dim. (FF) From this subtract the room riser height and tail length. Then add 4" (102) for the two joint overlaps.

**Riser Extension Length** = FF {First floor} - (RRH {First floor} + RT {Second floor}) + 4" (102). Minimum extension is 10 (254). Reduce riser length, if needed.


**Riser Tail (RT):** Length of riser extending down from the cabinet. Riser tail must extend a minimum of 5" (127) below slab, for ease of brazing.

Room Riser Height (RRH): 91 (2311) for TSL.

**Floor To Floor Height (FF):** Distance from top of slab to top of above slab. Slab thickness (ST); Slab thickness plus and additional material added to slab prior to setting cabinets.

Special care must be taken in sizing riser lengths and tail piece lengths when:

- A) Riser extensions are used.
- B) Floor to floor heights vary.
- C) Slab thickness varies from floor to floor.



Calculate extension length for Floor A.

Example: Floor to floor (FF) = 120" (3048)

Room Riser Height (RRH) = 91" (231

Room Riser Height (RRH) = 91" (2311) RT (Floor above) = 13" (330).

**Riser Extension:** 120" - (13" + 91") + 4" = 20".

 $3048 - (330 + 2311) + 102 = 508 \, \text{mm}.$ 

#### Notes:

- 1. Example shown riser extensions would be ordered with Floor "A" and assembled between "A" and "B".
- 2. Riser and extension "A" Top and Riser "B" bottom must be the same diameter. Extensions cannot transition.
- Extensions are shipped loose, bulk shipped to minimize shipping cost.
- 4. Dimensions are inches (mm).
- 5. Any extension below "A" can be ordered as a factory special.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster inc. All rights reserved 2014.

# Slab Hole Chart – 3 Pipe

#### Riser Stack Patterns

S R D For Cabinet Styles 2 and 5 For Cabinet Styles 3 and 4

**Clear Height is Floor to Ceiling Dimension** 

# Slab Hole, Risers Ship Loose and

| Installed | d Befor | e Cabine | et    |        |       | Riser Diameter |       |      |       |      |  |
|-----------|---------|----------|-------|--------|-------|----------------|-------|------|-------|------|--|
| Model     | Clear   | Height   | Riser | Length | 3     | 76.2           | 2     | 50.8 | 1     | 25.4 |  |
| Wodei     | in      | mm       | in    | mm     | in    | mm             | in    | mm   | in    | mm   |  |
|           | 105     | 2667     | 115   | 2921   |       | 165            | 5 1/2 | 140  | 4 1/2 | 114  |  |
|           | 100     | 2540     | 110   | 2794   |       |                |       |      |       |      |  |
| All       | 96      | 2438     | 106   | 2692   | 6 1/2 |                |       |      |       |      |  |
| All       | 95      | 2413     | 105   | 2667   | 0 1/2 |                |       |      |       |      |  |
|           | 94      | 2387     | 104   | 2641   |       |                |       |      |       |      |  |
|           | 93      | 2362     | 103   | 2616   |       |                |       |      |       |      |  |

Dimensions for 8" (203) slab

Clear height is dimension from floor to ceiling. Riser length is clear height plus slab thickness plus 2" (50). Opening centerline must be aligned from floor to floor

For risers over 100" (2540) using extensions with clear height equal to riser length or more, the hole size can be riser diameter plus 1" (25 mm). If riser diameter is not shown use next larger size.

Contractor is responsible to meet all codes and regulations.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at **climatemaster.com**. © ClimateMaster, Inc. All rights reserved 2014

# Shipping

## **Units Are Shipped FOB Factory**

## Chassis can be shipped in two ways,

- Standing upright, chassis are packaged in a shipping carton and are shipped four chassis per pallet (See Figure 1).
- Standing upright, chassis are shipped in the cabinet.
   The chassis cabinet combo are shipped four units per pallet. This shipping methodology reduces the number of freight pieces by 50%. This reduces freight costs, labor to remove shipping material, and dunnage removal expenses (See Figure 1).

## Cabinets can be shipped in two ways,

- 1. Standing upright, cabinets are packaged in shrink wrap and are shipped four cabinets per pallet (See Figure 1)
- 2. Laid horizontally with risers attached. Due to risers extending both below and above the cabinet anytime risers are attached to the cabinets horizontal shipping with the use of a flat bed truck is required. The number of cabinets per pallet can vary based on size and quantity mix (See shipping tables 2 and 2a below). Pallets are shrink wrapped and a tarp is applied over the products for added protection during transit.

## Risers can be shipped in two ways,

- 1. Shipped horizontally attached to the cabinet. See cabinet shipping option 2 above for details
- 2. Shipped horizontally in a crate. Risers are crated by themselves and can be shipped independently from cabinets allowing for early installation. Risers shipping in a crate separately requires the use of a flat bed truck. The number of risers per pallet can vary based on diameter and quantity mix (See shipping table 3 below). Pallets are reinforced with a custom wood frame and packaging (See Shipping Figure 4 below).

Chassis, cabinets, and risers are palletized to maximize shipping density. The logic used for grouping is unit size by sales order.

Special shipping accommodations can be provided. Please see the Pre-Engineered factory design specials section for more details on this. Some examples include, palletizing by floor, palletizing by riser, end fork pallets, and reduced number of units per pallet.

# Shipping Table 1 – Standard Chassis

|                                |           |            |       | Vertical | Shipping |              |             |          |                        |
|--------------------------------|-----------|------------|-------|----------|----------|--------------|-------------|----------|------------------------|
|                                |           | Multi-pack |       |          | Qty Per  | Multi-pack   | Multi-pack  | Pallet   | Approx. Qty            |
| Description                    | Size      | Length     | Width | Height   | Pallet   | Weight (lbs) | Weight (kg) | Stacking | Per 53' Box<br>Trailer |
|                                | 09-12     | 41         | 41    | 50       | 4        | 430          | 195         | 2 High   | 240                    |
| Chassis                        | 15-18     | 43         | 43    | 50       | 4        | 542          | 246         | 2 High   | 240                    |
|                                | 24-36     | 53         | 53    | 52       | 4        | 786          | 357         | 2 High   | 192                    |
|                                | 65" 09-12 | 41         | 41    | 72       | 4        | 422          | 192         | 1 High   | 112                    |
| Cabinets                       | 65" 15-18 | 43         | 43    | 72       | 4        | 466          | 212         | 1 High   | 112                    |
|                                | 65" 24-36 | 53         | 53    | 72       | 4        | 650          | 295         | 1 High   | 72                     |
|                                | 65" 09-12 | 41         | 41    | 72       | 4        | 830          | 377         | 1 High   | 112                    |
| Chassis Shipped<br>In Cabinets | 65" 15-18 | 43         | 43    | 72       | 4        | 986          | 447         | 1 High   | 112                    |
|                                | 65" 24-36 | 53         | 53    | 72       | 4        | 1,410        | 640         | 1 High   | 72                     |

# Shipping Table 1a – Hybrid Series

|            |                          |           | Ve     | rtical Sh           | ipping      |                   |                            |                           |                    |                                       |
|------------|--------------------------|-----------|--------|---------------------|-------------|-------------------|----------------------------|---------------------------|--------------------|---------------------------------------|
|            | Description              |           | Length | /lulti-pac<br>Width | k<br>Height | Qty Per<br>Pallet | Multi-pack<br>Weight (lbs) | Multi-pack<br>Weight (kg) | Pallet<br>Stacking | Approx. Qty<br>Per 53' Box<br>Trailer |
|            |                          |           | 48     | 41                  | 50          | 4                 | 562                        | 255                       | 2 High             | 208                                   |
|            | Chassis                  | 15-18     | 51     | 45                  | 50          | 4                 | 762                        | 346                       | 2 High             | 192                                   |
|            |                          |           | 61     | 55                  | 52          | 4                 | 984                        | 447                       | 2 High             | 80                                    |
|            |                          | 65" 09-12 | 48     | 41                  | 72          | 4                 | 498                        | 226                       | 1 High             | 104                                   |
|            | No Supply Flanges        | 65" 15-18 | 51     | 45                  | 72          | 4                 | 550                        | 250                       | 1 High             | 96                                    |
|            |                          | 65" 24-36 | 61     | 55                  | 72          | 4                 | 628                        | 285                       | 1 High             | 40                                    |
|            |                          | 80" 09-12 | 48     | 41                  | 87          | 4                 | 550                        | 250                       | 1 High             | 104                                   |
|            | No Supply Flanges        | 80" 15-18 | 51     | 45                  | 87          | 4                 | 606                        | 275                       | 1 High             | 96                                    |
|            |                          | 80" 24-36 | 61     | 55                  | 87          | 4                 | 696                        | 316                       | 1 High             | 40                                    |
|            |                          | 80" 09-12 | 48     | 41                  | 87          | 4                 | 550                        | 250                       | 1 High             | 104                                   |
| Cabinets   | Supply Flanges Installed | 80" 15-18 | 51     | 45                  | 87          | 4                 | 606                        | 275                       | 1 High             | 96                                    |
|            |                          | 80" 24-36 | 61     | 55                  | 87          | 4                 | 696                        | 316                       | 1 High             | 40                                    |
|            | No Supply Flanges        | 88" 09-12 | 48     | 41                  | 95          | 4                 | 582                        | 264                       | 1 High             | 104                                   |
|            |                          | 88" 15-18 | 51     | 45                  | 95          | 4                 | 642                        | 292                       | 1 High             | 96                                    |
|            |                          | 88" 24-36 | 61     | 55                  | 95          | 4                 | 736                        | 334                       | 1 High             | 40                                    |
|            |                          | 88" 09-12 | 48     | 41                  | 95          | 4                 | 582                        | 264                       | 1 High             | 104                                   |
|            | Supply Flanges Installed | 88" 15-18 | 51     | 45                  | 95          | 4                 | 642                        | 292                       | 1 High             | 96                                    |
|            |                          | 88" 24-36 | 61     | 55                  | 95          | 4                 | 736                        | 334                       | 1 High             | 40                                    |
|            |                          | 65" 09-12 | 48     | 41                  | 72          | 4                 | 1026                       | 466                       | 1 High             | 104                                   |
|            | No Supply Flanges        | 65" 15-18 | 51     | 45                  | 72          | 4                 | 1274                       | 578                       | 1 High             | 96                                    |
|            |                          | 65" 24-36 | 61     | 55                  | 72          | 4                 | 1540                       | 699                       | 1 High             | 40                                    |
|            |                          | 80" 09-12 | 41     | 41                  | 87          | 4                 | 886                        | 402                       | 1 High             | 104                                   |
|            | No Supply Flanges        | 80" 15-18 | 43     | 43                  | 87          | 4                 | 1,078                      | 489                       | 1 High             | 96                                    |
|            |                          | 80" 24-36 | 53     | 53                  | 87          | 4                 | 1,482                      | 672                       | 1 High             | 40                                    |
| Chassis    |                          | 80" 09-12 | 41     | 41                  | 87          | 4                 | 886                        | 402                       | 1 High             | 104                                   |
| Shipped In | Supply Flanges Installed | 80" 15-18 | 45     | 45                  | 87          | 4                 | 1,078                      | 489                       | 1 High             | 96                                    |
| Cabinets   |                          | 80" 24-36 | 56     | 53                  | 87          | 4                 | 1,482                      | 672                       | 1 High             | 40                                    |
|            |                          | 88" 09-12 | 41     | 41                  | 95          | 4                 | 942                        | 427                       | 1 High             | 104                                   |
|            | No Supply Flanges        | 88" 15-18 | 43     | 43                  | 95          | 4                 | 1,138                      | 516                       | 1 High             | 96                                    |
|            |                          | 88" 24-36 | 53     | 53                  | 95          | 4                 | 1,542                      | 700                       | 1 High             | 40                                    |
|            |                          | 88" 09-12 | 41     | 41                  | 95          | 4                 | 942                        | 427                       | 1 High             | 104                                   |
|            | Supply Flanges Installed | 88" 15-18 | 45     | 45                  | 95          | 4                 | 1,138                      | 516                       | 1 High             | 96                                    |
|            |                          | 88" 24-36 | 56     | 53                  | 95          | 4                 | 1,542                      | 700                       | 1 High             | 40                                    |

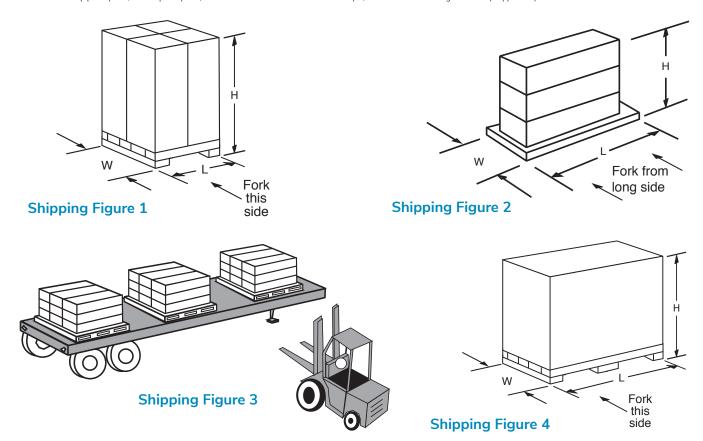
# **Shipping Table 2 – E Cabinet Series**

|             | Horizontal Shipping |            |       |        |                |                       |                       |           |  |  |
|-------------|---------------------|------------|-------|--------|----------------|-----------------------|-----------------------|-----------|--|--|
| Description | Size                | Multi-pack |       |        | Qty per pallet | Multi-pack<br>Approx. | Multi-pack<br>Approx. | Pallet    |  |  |
| Description | Oize                | Length     | Width | Height | Gty per punet  | Weight (lbs)          | Weight (kg)           | Stacking* |  |  |
|             | 65" 09-12           | 127        | 58    | 87     | 6              | 1046                  | 475                   | 2 High    |  |  |
|             | 65" 15-18           | 127        | 58    | 93     | 6              | 1118                  | 507                   | 2 High    |  |  |
|             | 65" 24-36           | 127        | 68    | 76     | 4              | 906                   | 411                   | 2 High    |  |  |
|             | 80" 09-12           | 127        | 58    | 87     | 6              | 1,199                 | 544                   | 2 High    |  |  |
| Cabinets    | 80" 15-18           | 127        | 58    | 93     | 6              | 1,277                 | 580                   | 2 High    |  |  |
|             | 80" 24-36           | 127        | 68    | 76     | 4              | 1,016                 | 461                   | 2 High    |  |  |
|             | 88" 09-12           | 127        | 58    | 87     | 6              | 1,247                 | 566                   | 2 High    |  |  |
|             | 88" 15-18           | 127        | 58    | 93     | 6              | 1,331                 | 604                   | 2 High    |  |  |
|             | 88" 24-36           | 127        | 68    | 76     | 4              | 1,056                 | 479                   | 2 High    |  |  |

<sup>\*</sup> Warehousing purposes only, pallets are shipped 1 High

# Shipping Table 2a – D Cabinet Series

| Horizontal Shipping |           |        |             |        |                  |                         |                        |           |
|---------------------|-----------|--------|-------------|--------|------------------|-------------------------|------------------------|-----------|
| Decemention         | Ci        | N      | /lulti-pack | (      | Often man mallat | Multi-pack              | Multi-pack             | Pallet    |
| Description         | Size      | Length | Width       | Height | Qty per pallet   | Approx.<br>Weight (lbs) | Approx.<br>Weight (kg) | Stacking* |
|                     | 65" 09-12 | 127    | 53          | 87     | 8                | 1150                    | 522                    | 2 High    |
| Cabinets            | 65" 15-18 | 127    | 53          | 93     | 8                | 1230                    | 558                    | 2 High    |
|                     | 65" 24-36 | 127    | 63          | 76     | 6                | 1262                    | 573                    | 2 High    |


<sup>\*</sup> Warehousing purposes only, pallets are shipped 1 High

# **Shipping Table 3**

|                       |                 |                |                          | R                                 | ISER SHIPPI                       | NG .                              |                                   |                    | RISER SHIPPING              |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------|-----------------|----------------|--------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------|-----------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                       |                 | Pallet         |                          | # of Non-                         | # of Non-                         | # of                              | # of                              |                    | Qty Pallets                 |  |  |  |  |  |  |  |  |  |  |  |
| Nominal<br>Size (in.) | Length<br>(in.) | Width<br>(in.) | MAX<br>Height<br>(in.) * | Insulated<br>Layers per<br>Pallet | Insulated<br>Risers per<br>Pallet | Insulated<br>Layers per<br>Pallet | Insulated<br>Risers per<br>Pallet | Pallet<br>Stacking | Per 48' Flat<br>Bed Trailer |  |  |  |  |  |  |  |  |  |  |  |
| 1                     | 120             | 50             | 48                       | 25                                | 300                               | 19                                | 228                               | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |
| 1.25                  | 120             | 50             | 48                       | 22                                | 220                               | 17                                | 170                               | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |
| 1.5                   | 120             | 50             | 48                       | 19                                | 190                               | 15                                | 150                               | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |
| 2                     | 120             | 50             | 48                       | 15                                | 150                               | 12                                | 120                               | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |
| 2.5                   | 120             | 50             | 48                       | 12                                | 108                               | 11                                | 99                                | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |
| 3                     | 120             | 50             | 48                       | 11                                | 88                                | 9                                 | 72                                | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |
| 4                     | 120             | 50             | 48                       | 8                                 | 64                                | 7                                 | 56                                | 2 High             | 8                           |  |  |  |  |  |  |  |  |  |  |  |

Calculations based on all palleted risers having the same nominal diameter size. Actual number of risers per pallet and number will vary based on riser diameter and insulation attachment mix.

\* - Includes the top pallet piece, bottom pallet piece, 0.25" cardboard dividers between each layer, and 0.375" thick tubing insulation (if applicable)



#### General:

Furnish and install ClimateMaster Tranquility® "TSL Vertical Stack" Water Source Heat Pumps, as indicated on the plans with capacities and characteristics as listed in the schedule and the specifications that follow.

Units shall be supplied completely factory built capable of operating over an entering water temperature range from 20° to 120°F (-6.7° to 48.9°C) as standard. Equivalent units from other manufacturers may be proposed provided approval to bid is given 10 days prior to bid closing. All equipment listed in this section must be rated and certified in accordance with Air-Conditioning, Heating and Refrigeration Institute/International Standards Organization (AHRI/ISO 13256-1). All equipment must be tested, investigated, and determined to comply with the requirements of the standards for Heating and Cooling Equipment UL-1995 for the United States and CAN/CSA-C22.2 NO.236 for Canada, by Intertek Testing Laboratories (ETL). The units shall have AHRI/ISO and ETL-US-C labels.

All units shall pass a factory acceptance test. The quality control system shall automatically perform the factory acceptance test via computer. A detailed report card from the factory acceptance test shall ship with each unit. (Note: If unit fails the factory acceptance test, it shall not be allowed to ship. Unit serial number shall be recorded by factory acceptance test and furnished on report card for ease of unit warranty status.)

#### **Cabinet Construction:**

The cabinet panels shall be fabricated from heavy gauge galvanized steel. The rigid one-piece cabinet assembly shall be constructed so that it is self-supporting, and can be installed prior to the chassis arrival, and to be able to avoid damage during construction. Cabinet shall have a full panel over the chassis opening for structural rigidity of the cabinet; **no "open" top or "open" bottom designs allowed.** 

The cabinet base shall contain a secondary drain pan fully insulated with a pressure differential drain trap connected to the condensate riser pipe, and guide rails for the slide in refrigeration chassis. Drain pan to be rubber grommet mounted to provide isolation of chassis from the cabinet. Drain pan(s) shall be easily accessible for cleaning. All interior surfaces shall be lined with 1/2 inch (12.7 mm) thick, 1-1/2 lb/ft3 (24 kg/m3) acoustic type fiberglass insulation. All insulation shall be foil faced and have exposed edges butted up to flanges to prevent the introduction of glass fibers into the air stream.

Standard insulation must meet NFPA Fire Hazard Classification requirements 25/50 per ASTM E84, UL 723, CAN/ULC S102-M88 and NFPA 90A requirements; air erosion and mold growth limits of UL-181; stringent fungal resistance test per ASTM-C1071 and ASTM G21; and shall meet zero level bacteria growth per ASTM G22. **Unit insulation must meet these stringent requirements or unit(s) will not be accepted.** 

Standard is 1 inch (25 mm) filter holder with 1inch (25 mm) thick fiberglass throwaway filter.

Option: 2 inch (50 mm) filter holder with 2 inch (50 mm) thick fiberglass throwaway filter.

Pre-Engineered Special: Integrated fresh air intake. Removes the need for field attachment of fresh air assembly. Does not increase the cabinet footprint. Available with cabinet side connection only.

Cabinet arrangements shall allow placement of riser piping on any one of the three sides of the cabinet not used for the chassis access and air supply. All cabinets shall have supply air knockouts on all sides and top. Return air K.O. to be removed from panel behind the filter. Field shall configure cabinets by removing factory knockouts and install duct flanges per model configuration shown on plans. For air noise attenuation purposes, the discharge air from fan shall discharge into insulated plenum that also contains x-shape painted air baffle. Units not having supply air noise baffles are not acceptable. Cabinet design shall allow a full height base board (4.50 inches/114 mm) beneath the return air "G" panel. The cabinet shall contain an easily removable motor/blower assembly.

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |

Option: Factory to configure supply air openings, remove K.O., cut insulation, and install duct angles. With dust protection, includes capping supply air openings and leaving K.O. in panel behind filter (installer to remove both).

Electrical conduit shall be installed from electrical unit control compartment to top of cabinet for low voltage control wiring as well as separate conduit for main power wiring. **Units without these two factory installed electric conduits will not be accepted.** 

Option: Leader and follower cabinets.

Option: Required installation vibration isolation pad to be applied at the factory to the bottom of the cabinet if not field provided.

Option: Cabinet height 80" or 88" (203 or 223 cm)

**Pre-Engineered Special: Extended cabinet heights** 

Option: Construction for unit mounted Thermostat (thermostat ordered separate) -- includes junction box mounted outside discharge plenum and has a Molex-type connector inside for quick connection to A91558 Series thermostat. The A91558 series use thermostat models ATA11U01, ATA11U03, ATA22U01, ATP21W02, ATP21W02, ATP21W02, ATP32U03C, AWC99U01, ATA32V01, AVB32V02C, AVB32V03C respectively with mating molex-type connector.

Pre-Engineered Special: Custom thermostat whips for connection to 3rd party provided thermostats.

Option: Low voltage 15, 25, or 35 foot (572, 762, or 1,067 cm) wire harness (whip) with molex-type connector for connection to remote mounted thermostat. For use with A91558 thermostat series (see above).

Pre-Engineered Special: Extended thermostat whips for remote thermostat location in excesses of the 35' from the cabinet.

Option: Cabinet to have wire harness for connection to A91558 series thermostat mounted to ADA "G" return air panel.

Option: Premium automotive grade rubber seal between cabinet inner panel and chassis.

Full-length supply, return, and insulated condensate water risers shall be type M copper. Riser length up to 120 inch (305 cm) is standard. Supply and return risers have integral internal piping including ball valves (for shut off purposes at unit). Risers and piping shall be factory pressure tested to check for leaks. Field installed hose kits are required to connect the chassis piping to the cabinet ball valve. The condensate riser shall be insulated with 3/8-inch (9.5 mm) Armaflex type insulation. The top of each riser shall be deeply swaged (3 inch/76.2 mm) to accept connection to the riser above/below, allowing for a floor to floor dimensional variance of ± one inch (25.4 mm). Units not having swaged riser-piping connections shall not be acceptable. Couplings and trim pieces shall not be allowed.

Option: Bulk ship risers so complete riser stack can be installed, pressure tested, and filled before the cabinets are installed.

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |  |

Pre-Engineered Special: Risers/Cabinets/Chassis shipped by floor. This helps with job site delivery coordination.

Option: Type L riser piping.

Option: Supply and return risers insulated with 3/8-inch (9.5 mm) ARMAFLEX (closed cell) type insulation.

1 inch through 3-inch diameter standard, 4-inch diameter available.

Option: Non-swaged riser piping for crimp (non-brazed) style connections.

Pre-Engineered Special: Risers for single pipe applications. Supply and return water lines are combined into one riser configuration.

Pre-Engineered Special: Riser connection location moved lower. Standard riser connections are made above the cabinets. This requires the use of a ladder or scaffolding to get access to the connection. Riser connection locations are moved lower so that connections can be made at the ground level. Risers must be shipped separately.

Pre-Engineered Special: Riser manual air vents. Allow for air to be purged from the riser stack during commissioning.

Pre-Engineered Special: Extended risers. Removes the need for riser extension pieces which results in less field connections.

Pre-Engineered Special: Remove drain riser. This is needed when condensate drain risers are field provided.

Pre-Engineered Special: Riser bypass valve. Allows water flow from supply to return riser during pressurization prior to the chassis being installed.

### Fan and Motor Assembly:

The cabinet shall contain a removable motor/blower assembly. Units shall have a direct drive centrifugal fan. The fan motor shall be 3 speed, permanently lubricated, PSC type with thermal overload protection. The fan motor for small size units (09 and 12) shall be isolated from the fan housing by a torsionally flexible motor mounting system with rubber type grommets to inhibit vibration induced high noise levels associated with "hard wire belly band" motor mounting. The fan motor on medium and large units (15-36) shall be isolated with flexible rubber type isolation grommets only. Airflow/External static pressure rating of the unit shall be based on a wet coil and clean filter. Ratings based on a dry coil and/or no air filter shall not be acceptable.

Option: Constant Volume (CV) ECM variable speed ball bearing type motor. The CV ECM fan motor shall provide soft starting, maintain constant CFM over its static operating range and provide airflow adjustment in 25 CFM increments via its control board. The fan motor shall be isolated from housing by rubber grommets. The motor shall be permanently lubricated and have thermal overload protection. A special dehumidification mode shall be provided to allow lower airflows in cooling for better dehumidification. The dehumidification mode may be constant or automatic (humidistat controlled).

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest eversion of this document is available at climateMaster.com. © ClimateMaster in.c. All rights reserved 2014.

Option: Constant Torque (CT) ECM. The fan motor shall be isolated from housing by rubber grommets.

The motor shall be permanently lubricated and have thermal overload protection.

#### Chassis:

The chassis, which incorporates the air coil, water coil, drain pan with solid-state electronic condensate overflow protection, compressor, and electrical components shall be easily installed for quick jobsite installation and future servicing purposes. The slide in chassis shall have insulated panels surrounding the compressor. Compressors are not in the air stream. The chassis base shall be fabricated from heavy gauge galvanized steel formed to match the slide in rails of the cabinet. Units shall have a factory installed 1 inch (25.4 mm) thick filter bracket and throwaway type glass fiber filter. Furnish one spare set of filters.

Option: Chassis can ship upright in any cabinet that risers are not attached.

Option: UltraQuiet package shall consist of the standard double isolation of the compressor plus sound attenuating compressor blanket applied to the compressor. All sheet metal surrounding the compressor shall have high density sound attenuating material with STC rating of 26 per ASTM E-90 and then covered with fiberglass insulation.

Option: Factory wired for communicating thermostat, requires AWC99U01 thermostat.

Option: Rib relay replaces contactor for models 09 through 18. Eliminates contactor "click" when first energized.

Option: vFLow® The unit will be supplied with internally factory mounted modulating water valve with delta T control. The factory built-in valve shall modulate water flow through unit based on a field adjustable water temperature difference between the entering and leaving water. The valve shall automatically adjust for operating mode, source water temperature and variations in external head pressure. The valve will also act as a shut-off valve to prevent water flow through the unit when the unit is not activated and will have a minimum position capability.

Option: Factory installed 3-way water valve. Valves are used on units at the end of a riser water loop to ensure continuous flow between supply and return riser stacks when those units are not in operation. This prevents excessive water flow and pressure drop through the coax when it is not in operation.

Pre-Engineered Special: Internally factory mounted water loop strainer. Strainers filter water to ensure debris does not enter the unit coaxial heat exchanger. Debris in water loops can degrade thermal transfer (efficiency) and potentially limit water flow. Please consult TSL IOM for proper care and maintenance of strainers when selecting this option.

Pre-Engineered Special: Supply and Return P/T ports. Allows the for the water pressure drop to be checked across the heat exchanger which can be correlated to a fluid flow rate. Technicians can use this feature to determine if there is proper water flow through the unit.

Option: The unit will be supplied with internally factory mounted two-way motorized water valve (MWV) for variable speed loop pumping requirements. Valve to be fail closed type. Water circuit will have factory installed high pressure switch located between MWV and heat exchanger.

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |

Option: The unit will be supplied with internally factory mounted automatic water flow regulators.

Option: The unit will be supplied with internally factory mounted secondary pump rated for 200 PSIG applications.

Water connections between chassis and the cabinet shall be accomplished via a hose kit consisting of Kevlar-reinforced EPDM core hose surrounded by a stainless-steel braid. Hose kit shall have brass fittings with stainless-steel ferrules. AHU hose ends shall be Internal NPSH (National Pipe Straight Hose) swivel ends with EPDM washers which connect to mating threaded end connection on chassis and riser ball valve. The hose kit shall be rated for 400 psi (2,756 kPa) design working pressure.

## **Refrigerant Circuit:**

All units shall contain an EarthPure® (HFC-410A) sealed refrigerant circuit including a high efficiency scroll or rotary compressor designed for heat pump operation, a thermostatic expansion valve for refrigerant metering, an enhanced corrugated aluminium lanced fin and rifled copper tube refrigerant to air heat exchanger, reversing valve, coaxial (tube in tube) refrigerant to water heat exchanger, and safety controls including a high pressure switch, low pressure switch (loss of charge), water coil low temperature sensor, and air coil low temperature sensor. Access fittings shall be factory installed on high- and low- pressure refrigerant lines to facilitate field service. Activation of any safety device shall prevent compressor operation via a microprocessor lockout circuit. The lockout circuit shall be reset at the thermostat or at the contractor supplied disconnect switch. **Units that cannot be reset at the thermostat shall not be acceptable.** 

Hermetic compressors shall be internally sprung and externally isolated. The compressor shall have a dual level vibration isolation system. The compressor will be mounted on specially engineered sound-tested EPDM vibration isolation grommets to a large heavy gauge compressor base pan, which is then isolated from the cabinet by resting on condensate drain pan which is isolated by grommets for maximized vibration attenuation. All units (except units with rotary compressors) shall include a discharge muffler to further enhance sound attenuation. Compressor shall have thermal overload protection.

Refrigerant to air heat exchangers shall utilize enhanced corrugated lanced aluminium fins and rifled copper tube construction rated to withstand 625 PSIG (4309 kPa) refrigerant working pressure. Copper hairpins are tin electroplated for added protection from formicary corrosion. **Units that do not have tin-plated hairpins shall not be acceptable.** 

Refrigerant to water heat exchangers shall be of copper inner water tube and steel refrigerant outer tube design, rated to withstand 625 PSIG (4,309 kPa) working refrigerant pressure and 500 PSIG (3,445 kPa) working water pressure. The refrigerant to water heat exchanger shall be "electro-coated" with a low cure cathodic epoxy material a minimum of 0.4 mils thick (0.4 – 1.5 mils range) on all surfaces. The black colored coating shall provide a minimum of 1,000 hours salt spray protection per ASTM B117-97 on all external steel and copper tubing. The material shall be formulated without the inclusion of any heavy metals and shall exhibit a pencil hardness of 2H (ASTM D3363-92A), crosshatch adhesion of 4B-5B (ASTM D3359-95), and impact resistance of 160 in-lbs (184 kg-cm) direct (ASTM D2794-93).

Refrigerant metering shall be accomplished by thermostatic expansion valve only. Expansion valves shall be dual port balanced types with external equalizer for optimum refrigerant metering. Units shall be designed and tested for operating ranges of entering water temperatures from 20° to 120°F (-6.7° to 48.9°C). Reversing valve shall be four-way solenoid activated refrigerant valve, which shall default to heating mode should the solenoid fail to function. If the reversing valve solenoid defaults to cooling mode, an additional low temperature thermostat must be provided to prevent over-cooling an already cold room.

Option: The unit will be supplied with non-plated air to refrigerant heat exchanger.

Option: The unit will be supplied with cupro-nickel coaxial water to refrigerant heat exchanger.

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |  |

#### **Cabinet Drain Pan:**

The drain pan shall be constructed of galvanized steel and have a powder coat paint application to further inhibit corrosion. This corrosion protection system shall meet the stringent 1,000-hour salt spray test per ASTM B117. Drain pan to be isolated from cabinet with four EPDM vibration isolation grommets. If plastic type material is used, it must be HDPE (High Density Polyethylene) to avoid thermal cycling shock stress failure over the lifetime of the unit. Drain pan shall be fully insulated. Drain pan shall have at a minimum a doubled sloped surface to allow positive drainage to the outlet opening, which shall be at the lowest level of the entire pan surface. Drain outlet shall be connected from pan outlet to condensate riser (if supplied) with factory installed trap inside of cabinet. The cabinet drain pan as standard will be supplied with solid-state electronic condensate overflow protection. Drain pans that are not isolated from cabinet shall not be acceptable. Mechanical float switches will NOT be accepted.

# Option: Stainless steel drain pan

### **Electrical:**

A control compartment shall be located within the chassis and shall contain a 50VA transformer, 24 volts activated, 2 pole compressor contactor, relay and solid-state controller for complete unit operation. Reversing valve and fan motor wiring shall be routed through this electronic controller. Units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 Volt and provide heating or cooling as required by the remote thermostat/sensor. A control compartment shall be located within the cabinet and shall contain a terminal block for high voltage connections. All electrical connections between the chassis and cabinet shall be made via locking quick-connects.

Option: Disconnect Switch, Non-Fused, classified as motor disconnect.

Option: Circuit Breaker, all 208/230 volt and 265 volt, 15 and 20 amp - HACR rated, 265-volt 25 amp and higher - supplemental rated.

## **Enhanced Solid State Control System (CXM2):**

Units shall have a solid-state control system. Units utilizing electro-mechanical control shall not be acceptable. The control system microprocessor board shall be specifically designed to protect against building electrical system noise contamination, EMI, and RFI interference. The control system shall interface with a heat pump type thermostat. The control system shall have the following features:

- a. Anti-short cycle time delay on compressor operation.
- b. Random start on power up mode.
- c. Low voltage protection.
- d. High voltage protection.
- e. Unit shutdown on high or low refrigerant pressures.
- f. Unit shutdown on low water temperature.
- g. Condensate overflow electronic protection.
- h. Option to reset unit at thermostat or disconnect.
- i. Automatic intelligent reset. Unit shall automatically reset the unit 5 minutes after trip if the fault has cleared. If a fault occurs 3 times sequentially without thermostat meeting temperature, then lockout requiring manual reset will occur.
- j. Ability to defeat time delays for servicing.
- k. The low-pressure switch shall not be monitored for the first 120 seconds after a compressor start command to prevent nuisance safety trips.
- I. 24V output to cycle a motorized water valve or other device with compressor contactor.
- m. Unit Performance Sentinel (UPS). The UPS warns when the heat pump is running inefficiently.
- n. Water coil low temperature sensing (selectable for water or anti-freeze).

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |  |

- o. Air coil low temperature sensing.
- p. Minimized reversing valve operation (Unit control logic shall only switch the reversing valve when cooling is demanded for the first time. The reversing valve shall be held in this position until the first call for heating, ensuring quiet operation and increased valve life).
- q. Emergency shutdown contacts.
- r. Entering and leaving water temperature sensing.
- s. Leaving air temperature sensing.
- t. Compressor discharge temperature sensing.

NOTE: Units not providing the 8 safety protections of anti-short cycle, low voltage, high voltage, high refrigerant pressure, low pressure (loss of charge), air coil low temperature cut-out, water coil low temperature cut-out, and condensate overflow protections will not be accepted.

When CXM2 is connected to AWC99U01 thermostat or handheld service tool, the installer/service technician can; check DIP Switch S2 settings; run operation modes manually; check all physical inputs from thermostat and refrigerant pressure switches status, (Y1, Y2, W, O, G, H, ESD, NSB, OR, HP switch, and LOC switch); current or at time of fault the following temperatures - water coil (LT1), air coil (LT2), compressor discharge, leaving air, leaving water, entering water and control voltage; record last five faults, list possible reasons, and clear faults. When the AWC99U01 communicating thermostat is used this same functionality can be viewed and adjusted remotely in the web portal or mobile app. Systems not providing remote access, diagnosis, and adjustment functionality will not be accepted.

## Option: Enhanced Solid State Control System (DXM2.5)

This control system is a communicating controller.

Control shall have the above-mentioned features of the CXM2 control system along with the following expanded features:

- a. Removable thermostat connector.
- b. Night setback control.
- c. Random start on return from night setback.
- d. Override temperature control with 2-hour timer for room occupant to override setback temperature at the thermostat.
- e. Dry contact night setback output for digital night setback thermostats.
- f. Ability to work with heat pump or heat/cool (Y, W) type thermostats.
- q. Ability to work with heat pump thermostats using O or B reversing valve control.
- h. Boilerless system heat control at low loop water temperature.
- i. Ability to allow up to 3 units to be controlled by one thermostat.
- j. Relay to operate an external damper.
- k. Relay to start system pump.
- I. 75 VA control transformer. Control transformer shall have load side short circuit and overload protection via a built-in circuit breaker.

NOTE: Units not providing the 8 safety protections of anti-short cycle, low voltage, high voltage, high refrigerant pressure, low pressure (loss of charge), air coil low temperature cut-out, water coil low temperature cut-out, and condensate overflow protection for both drain pans will not be accepted.

When DXM2.5 is connected to AWC99U01 communicating thermostat or handheld service tool, the installer/service technician can; check and set CFM; check DIP Switch S1, S2, and S3 settings; run operation modes manually; check all physical inputs from thermostat and refrigerant pressure switches status, (Y1, Y2, W, O, G, H, ESD, NSB, OR, HP switch, and LOC switch); current or at time of fault the following temperatures - water coil (LT1), air coil (LT2), compressor discharge, leaving air, leaving water, entering water and control

voltage; record last five faults, list possible reasons, and clear faults. When the AWC99U01 communicating thermostat is used this same functionality can be viewed and adjusted remotely with the only portal or mobile app. Systems not providing remote access, diagnosis, and adjustment functionality will not be accepted.

## Digital Night Setback with Pump Restart (DXM2.5 w/ ATP32U03C/04C, AWC99U01):

The unit will be provided with a Digital Night Setback feature using an accessory relay on the DXM2.5 controller with an ATP32U03C/04C or AWC99U01 thermostat and an external, field-provided time clock. The external time clock will initiate and terminate the night setback period. The thermostat will have a night setback override feature with a programmable override time period.

An additional accessory relay on the unit DXM2.5 controller will energize the building loop pump control for the duration of the override period. (Note: This feature requires additional low voltage wiring. Consult Application Drawings for details.)

## Remote Service Sentinel (CXM2/DXM2.5):

Solid state control system shall communicate with applicable thermostats to display (at the thermostat) the unit status, fault status, and specific fault condition, as well as retrieve previously stored fault that caused unit shutdown. The Remote Service Sentinel allows building maintenance personnel or service personnel to diagnose unit from the wall thermostat. The control board shall provide a signal to the thermostat, indicating a lockout. A detailed message shall be provided at the communicating thermostat or service tool and specific fault status such as over/under voltage fault, high pressure fault, low pressure fault, low water temperature fault, condensate overflow fault, etc. Units that do not provide this remote service sentinel shall not be acceptable.

## Option: MPC (Multiple Protocol Control) Interface System

Units shall have all the features listed above (either CXM2 or DXM2.5) and the control board will be supplied with a Multiple Protocol interface board. Available protocols are BACnet MS/TP, Modbus, or Johnson Controls N2. The choice of protocol shall be field selectable/changeable via the use of a simple selector switch. Protocol selection shall not require any additional programming or special external hardware or software tools. This will permit all units to be daisy chain connected by a 2-wire twisted pair shielded cable. The following points must be available at a central or remote computer location:

- a. Space temperature
- b. Leaving water temperature
- c. Discharge air temperature
- d. Command of space temperature setpoint
- e. Cooling status
- f. Heating status
- g. Low temperature sensor alarm
- h. Low pressure sensor alarm
- i. High pressure switch alarm
- j. Condensate overflow alarm
- k. Hi/low voltage alarm
- I. Fan "ON/AUTO" position of space thermostat as specified above
- m. Unoccupied/occupied command
- n. Cooling command
- o. Heating command
- p. Fan "ON/AUTO" command
- q. Fault reset command
- r. Itemized fault code revealing reason for specific shutdown fault (any one of 7)

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |
| ClimateMactar's opinion or commandation of its products. The latest varion of this document is available at climateMactar and © ClimateMactar Inc. All rights recovered 2014                                                                               |

This option also provides the upgraded 75 VA control transformer with load side short circuit and overload protection via a built-in circuit breaker.

#### **Return Panels:**

The "G" return AR panel assembly shall be architecturally designed, acoustic type, with one-piece frame and hinged door for easy and quick access to filter. Assembly is attached to the cabinet with 4 bolts which can be easily removed for chassis access. The hinged return panel shall be made of heavy gauge die formed galvanized steel with a powder coat finish in "Polar Ice" or special color. Return air panels that protrude from wall more than 5/8 inch (15.9 mm) are not acceptable.

Option: Return air panel painted "Bright White" color

Pre-Engineered Special: Custom painting of return air panels per field specified color.

Option: "G" panel with mounting for ADA thermostat allows thermostat to be mounted low to comply with ADA height requirement.

Pre-Engineered Special: Custom return air panel knock outs for ADA mounted 3rd party provided thermostats.

Pre-Engineered Special: ADA return air panels with knock out moved lower. Needed when cabinets are placed on unit stands to comply with ADA maximum thermostat height.

Option: "G" panel with keyed locks - prevents users from tampering with units.

Option: Style "G" return air panel with frame for recessing cabinet behind finished wall.

Option: Motorized fresh air damper for "G" panel with frame - allows outside air to enter on right or left side.

Option: Flush Mounted "L" panel. Offered in Bright White and Polar Ice color option. Allows for chassis to be removed without removing the frame.

## Supply Grille(s):

Supply grille(s) shall be architecturally designed "brushed" aluminium or powder coated finish in "Polar Ice" color.

Option: Supply grille painted "Bright White".

Option: Supply grille with double deflection style louvers.

Option: Supply grille with double deflection style louvers with opposed damper.

#### Warranty:

ClimateMaster shall warranty equipment for a period of 12 months from start up or 18 months from shipping (which ever occurs first).

Option: Extended 4-year compressor warranty covers compressor for a total of 5 years.

Option: Extended 4-year refrigeration circuit warranty covers coils, reversing valve, expansion valve and compressor for a total of 5 years.

Option: Extended 4-year control board warranty covers the CXM2/DXM2.5 control board for a total of 5 years.

### FIELD INSTALLED OPTIONS

## Hose Kits (required for field water connections):

Water connections between chassis and the cabinet shall be accomplished via a hose kit consisting of Kevlar-reinforced EPDM core hose surrounded by a stainless-steel braid. Hose kit shall have brass fittings with stainless-steel ferrules. The hose kit shall be rated for 400 psi (2,756 kPa) design working pressure. The AHU hose kits are required for each cabinet.

### **Cabinet Stands - ACST Series:**

Cabinet stands are used when applications have baseboards with heights taller than 4 inches. Heavy 16-gauge galvanized steel construction, bolts to bottom of cabinet. Heights 1-inch (25 mm) to 13-inch (330 mm) by 1inch (25 mm) increments. Ships in bulk for field attachment.

Pre-Engineered Special: Cabinet stands factory assembled and attached to the cabinet.

### Filters:

Pleated media disposable 1 inch (25 mm) thick MERV 8 or MERV 11, 2 inches (50 mm) thick MERV 8, MERV 11 or MERV 13.

#### Thermostats:

The thermostat shall be a ClimateMaster electronic type thermostat as selected below with the described features:

Note: To achieve full benefit of controls, use 2 speed thermostats (switch for manual or Y2 for automatic change).

#### a. Thermostat (Communicating) (AWC99U01)

An electronic communicating web-enabled touchscreen thermostat shall be provided. The thermostat shall offer three stages of heating and two stages of cooling with precise temperature control and have a four-wire connection to the unit. The thermostat shall be capable of manual or automatic change-over operation and shall operate in standard or programmable mode. An integrated humidity control feature shall be included to control a humidifier and/or a dehumidifier. The thermostat shall include a utility demand reduction feature to be initiated by an independent time program or an external input.

The thermostat shall provide access to via the web portal or mobile application to include temperature adjustment, schedule adjustment including occupied/unoccupied, entering water temperature, leaving water temperature, water coil temperature, air coil temperature, leaving air temperature, and compressor discharge temperature. A graphical system layout to be provided with real-time operating mode information of the temperature sensors for easy diagnostics.

The thermostat shall display system faults with probable cause and troubleshooting guidance. The system shall provide in clear language last five faults, time of faults, operating temps at time of fault, and possible reasons for the fault. The thermostat shall provide access for immediate manual control of all outputs via the web portal/mobile application for rapid troubleshooting.

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |  |

- b. Single-Stage Digital Auto or Manual Changeover (ATA11U01)
  - Thermostat shall be a single-stage, digital, auto or manual changeover with HEAT-OFF-COOL-AUTO system switch and fan ON-AUTO switch. Thermostat shall have an LCD display with temperature and setpoint(s) in °F or °C. The Thermostat shall provide permanent memory of setpoint(s) without batteries. A fault LED shall be provided to display specific fault condition. Thermostat shall provide temperature display offset for custom applications.
- c. Single Stage Digital Auto or Manual Changeover and Manual Two Fan Speed Selections (ATA11U03)

  Thermostat shall be a single-stage, digital, auto or manual changeover with HEAT-OFF-COOL-AUTO system settings, high and low fan settings and fan ON-AUTO settings. Thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C. The thermostat shall provide permanent memory of setpoint(s) without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. Thermostat shall allow the use of an accessory remote temperature sensor (17B0008N05). Thermostat navigation shall be accomplished via 4 push buttons.
- d. Multi-stage Digital Automatic Changeover (ATA22U01)
  - Thermostat shall be multi-stage (2H/2C), manual or automatic changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings. Thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C. The thermostat shall provide permanent memory of setpoint(s) without batteries. A fault LED shall be provided to indicate specific fault condition(s). Thermostat shall provide temperature display offset for custom applications. Thermostat shall allow unit to provide better dehumidification with optional DXM2.5 controller by automatically using lower fan speed on stage 1 cooling (higher latent cooling) as main cooling mode, and automatically shifting to high-speed fan on stage 2 cooling. Thermostat can be configured to heat and cool even if in off mode (replaces night low limit switch (NLLS) in cabinet).
- e. <u>Multi-stage Manual Changeover Programmable 5/2 Day (ATP21W02)</u>

  Thermostat shall be 5 day/2 day programmable (with up to 4 setpoints per day), multi-stage (2H/1C), manual or automatic changeover with HEAT-OFF-COOL-EM HEAT system settings and fan ON-AUTO settings. Thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C.
- f. Multi-stage Automatic or Manual Changeover Programmable 7 Day (ATP32U03C)
  - Thermostat shall be 7 day programmable (with up to 4 setpoints per day), multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings. Thermostat shall have a blue backlit dot matrix LCD display with temperature, setpoints, mode, and status indication. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12 or 24-hour clock. Fault identification shall be provided (when used with ClimateMaster CXM2 or DXM2.5 controls) to simplify troubleshooting by providing specific unit fault at the thermostat with red backlit LCD during unit lockout. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. Thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. Thermostat shall provide an installer setup for configuring options and for setup of servicing contractor name and contact information. Thermostat shall allow the use of an accessory remote and/or outdoor temperature sensor (AST008C). Thermostat navigation shall be accomplished via five buttons (up/down/right/left/select) with menu-driven selections for ease of use and programming.
- g. CM100 Multi-stage Automatic or Manual Changeover digital thermostat (ATA32V01)
  Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ONAUTO settings. Thermostat shall have a green backlit LED display with temperature, setpoints, mode, and status indication via a green (cooling) or red(heating) LED. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

24- hour clock. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and interstage differential settings. Thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. Thermostat shall provide an installer setup for configuring. Thermostat navigation shall be accomplished via four buttons (Mode/fan/down/up) with menu-driven selections for ease of use and programming.

- h. CM300 Multi-stage, Automatic or Manual Changeover, 7-day Programmable with Wi-Fi and Humidity Control (AVB32V02C). Residential version shall be 7 day programmable with up to 4 setpoints per day. Commercial version shall be 7 day programmable with 4 occupied/unoccupied periods per day with up to 4-hour override. Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings, Wi-Fi, pre-occupancy purge fan option, night time control of display backlight, bi-color LED indicates a heating or cooling demand, keypad lock, title 24 compliant, openADR2.0b certified with Skyport web portal. Compatible with condensate overflow warning systems lockout compressor with message on.
- i. <u>CM500 Color Touchscreen Display, Multi-stage, Automatic or Manual Changeover, 7-day Programmable with Wi-Fi and Humidity Control (AVB32V03C)</u>

Thermostat shall have color resistive touchscreen display with space temperature, relative humidity, setpoints, mode, status indication and local weather (if connected to Wi-Fi). Residential version shall be 7 day programmable with up to 4 setpoints per day. Commercial version shall be 7 day programmable with 4 occupied/unoccupied periods per day with up to 4-hour override. Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ONAUTO settings, Wi-Fi, pre-occupancy purge fan option, customizable screen saver and background displays, indicator on display indicates a heating or cooling demand, set-point lock, title 24 compliant, openADR2.0b certified with Skyport web portal. Compatible with condensate overflow warning systems – lockout compressor with message on the display. Capable of being monitored by 3rd party software. Compatible with AST014 Wi-Fi remote sensor. Configurator mobile app or web portal for easy setup. Separate dehumidification and humidification setpoints shall be configurable for discreet outputs to a dehumidification option and/or an external humidifier. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24-hour clock. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, dead-band range setting, and inter-stage differential settings. Thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. Thermostat shall provide access to a web portal and mobile app for installer setup for configuring options. Thermostat shall have menu-driven selections for ease of use and programming.

## **DDC Sensors:**

ClimateMaster wall mounted DDC sensor to monitor room temperature and interfaces with optional DDC interface system described above. Several types as described below:

- a. Sensor only with no display (MPC).
- b. Sensor with setpoint adjustment and override (MPC).
- c. Sensor with setpoint adjustment and override, LCD display, status/fault indication (MPC).

NOTICE! This product specification document is furnished as a means to copy and paste ClimateMaster product information into project specification. It is not intended to be a complete list of product requirements. This document is an excerpt from the product submittal and must not be used without consulting the complete product submittal. For complete product installation and application requirements, please consult the complete product submittal. ClimateMaster is not responsible for misuse of this document or a failure to adequately review specific requirements in the product submittal.

| ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely  |  |
| ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014                                                                             |  |

# Pre-Engineered Factory Design Specials

In a fast pace ever changing market
ClimateMaster is committed to working
with our partners to bring solutions to
their project challenges and we do this in many
ways. We design our products to be extremely configurable,
offer the widest range of product options, continually
introduce new options, and support special design
modification requests. When unique solutions are needed to
support your project specific needs, ClimateMaster is here
to be your partner!

In our years of experience we have supported many different requests. Below is a list commonly requested (preengineered) factory design specials we support:

- Cabinets stands factory assembled and attached to the cabinet – Saves labor and time in the field
- Extended height cabinets Reduced ducting material; Supply air is discharged at a higher elevation (lengths limited)
- Integrated fresh air intake Conditioned outside air can be ducted directly to the cabinet without the need for a field accessory and without extending the cabinets footprint
- **Single pipe risers** Supply and return riser combined into one riser for single pipe applications
- Riser to riser connection points moved lower Allows for brazing connection to be made without the use of a ladder or scaffolding
- Supply and Return P/T ports Allows for water pressure drop to be checked across the heat exchanger which can be correlated to a fluid flow rate
- Riser manual air vents Allow air to be purged from the system at the top of a riser stack

- Extended riser lengths Removes the needed for extension pieces (lengths limited)
- Remove drain riser When drain risers are field provided
- Riser bypass valve Allows water flow from supply to return riser during pressurization prior to the chassis being installed
- 4" Risers Applications that need large amounts of water flow
- Risers/Cabinets/Chassis shipped by floor Helps with job site delivery coordination
- Extended thermostat whips Same labor/time saving solution but needed when remote thermostats are located more than 35' away
- Custom thermostat whips Used for connection to 3rd party provided thermostats
- ADA return air panels with custom knocks outs Needed with 3rd party provided thermostats are mounted to our return air doors
- Customer return air panel colors Supports Architect/ Designer/Owner requests
- **Strainers** Collect debris in the water loop stopping it from entering the water heat exchanger

These are just a few of the product modifications we have supported for applications specific needs. To inquire about any of these preconfigured special options or any other solutions you need support with on your vertical high-rise project please contact your local ClimateMaster Representative: Rep Locator.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, Inc. All rights reserved 2014.

# **Performance Sheet**

| SUBMITTAL DATA - I-P UNITS      |       |
|---------------------------------|-------|
| Unit Designation:               |       |
| Job Name:                       |       |
| Architect:                      |       |
| Engineer:                       |       |
| Contractor:                     |       |
| PERFORMANCE DATA                |       |
| Cooling Capacity:               | Btur  |
| EER:                            |       |
| Heating Capacity:               | Btuł  |
| COP:                            |       |
| Ambient Air Temp:               | °F    |
| Entering Water Temp (Clg):      | °F    |
| Entering Air Temp (Clg):        | °F    |
| Entering Water Temp (Htg):      | °F    |
| Entering Air Temp (Htg):        | °F    |
| Airflow:                        | CFM   |
| Fan Speed or Motor/RPM/Turns:   |       |
| Operating Weight:               | (lb   |
| ELECTRICAL DATA                 |       |
| Power Supply:                   | Volts |
| Phase                           | Hz    |
| Minimum Circuit Ampacity:       |       |
| Maximum Overcurrent Protection: |       |

| Unit Designation:             |       |
|-------------------------------|-------|
| Job Name:                     |       |
| Architect:                    |       |
| Engineer:                     |       |
| Contractor:                   |       |
| PERFORMANCE DATA              |       |
| Cooling Capacity:             | kW    |
| EER:                          |       |
| Heating Capacity:             | kW    |
| COP:                          |       |
| Ambient Air Temp:             | °C    |
| Entering Water Temp (Clg):    | °C    |
| Entering Air Temp (Clg):      | °C    |
| Entering Water Temp (Htg):    | °C    |
| Entering Air Temp (Htg):      | °C    |
| Airflow:                      | l/s   |
| Fan Speed or Motor/RPM/Turns: |       |
| Operating Weight:             | (kg)  |
| ELECTRICAL DATA               |       |
| Power Supply:                 | Volts |
| Phase                         | Hz    |
| Minimum Circuit Ampacity:     |       |

# **Revision History**

| 308/28   Pages 25, 99, and 104   Removed AHH hose kits. Updated the hose kit mechanical specs.   Transitioned CAVM to CAVM2 and Cav to EXVM2 sun to Controls. Introduced AWC WiFi communicating color touchscreen thermostat of the describe the CT ECM blower motor functionally.   Updated ratings table.   Added page to describe the CT ECM blower motor functionally.   Updated ratings table.   Added page to describe the CT ECM blower motor functionally.   Updated ratings table.   Added page to describe the CT ECM blower motor functionally.   Updated ratings table.   Added page to the CT ECM blower motor functionally.   Updated ratings table.   Added page to the CT ECM blower motor functionally.   Updated Pages 57, 58 and 71   AVHS "G" panel dimensions   Added Paf Affiter dimensions to theylocal data tables and updated AVHS "G" panel Decoder   Added Rafiter dimensions to theylocal data tables and updated AVHS "G" page 19, 71   AVHS "G" panel Decoder   Added Riser Decoder   Added Riser Decoder   Updated Physical Data and Supply Air Opening and Grillee pages, changed measurements on Hose Kits and Stands page.   Updated Boggles, changed measurements on Hose Kits and Stands page.   Updated document verbiage/layout, added Pre-Engineered section, introduced new A-way water valve, risers attached with horizontal shipping, DDC chassis controls, themostal options, new decoder   Option   Added   Updated document verbiage/layout, added Pre-Engineered section, introduced new A-way water valve, risers attached with horizontal shipping, DDC chassis controls, themostal options, new decoder   Option   Added   Updated Horizontal shipping, DDC chassis controls, themostal options, new decoder   Option   Optio | Date:    | Item:                                   | Action:                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| duced AWC W-Fi communicating color touchscreen thermostal   Added page to describe the CT ECM blower motor functionality.     Display    3/08/23  | Pages 25, 99, and 104                   | Removed AHH hose kits. Updated the hose kit mechanical specs.                                                                     |
| Updated ratings table.   203/24/22   Pages 96.5   Added additional cabinet dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/22/22 | All                                     | Transitioned CXM to CXM2 and DXM2 to DXM2.5 unit controls. Introduced AWC Wi-Fi communicating color touchscreen thermostat        |
| 09/28/24         All         Removed LON Controls           09/07/21         Pages 57, 58 and 71         Added RA filter dimensions to physical data tables and updated AVIS* 6" panel dimensions           08/26/21         Page 19, 71         Introduced ADA Type 1/Type 2 Thermostat Mounting Table in the AVIS* 6" Panel Decoder           01/18/21         Page 20         Added Riser Decoder           01/08/22         Pages Added         Updated Physical Data, added Hybrid Physical Data and Supply Air Opening and Grilles pages, changed measurements on Hose Kits and Stands page           11/3/20         Page 84         Updated Engineering Specs           09/25/20         All         Updated Engineering Specs           09/25/20         All         Updated Engineering Specs           05/14/19         Pages 10,60,61,67         Misc. updates           05/14/19         Pages 10,60,61,67         Misc. updates           09/26/18         All         updated heating LAT.           09/26/18         All         updated heating LAT.           09/26/18         All         updated heating LAT.           09/26/18         All         updated decoder and Wirth Wirth Gliagrams           08/18/17         All         updated decoder and Wirth Wirth Gliagrams           08/18/17/10         Cabinet and chassis decoders, 200 PSI pump, and modulating water valve,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/14/22 | Pages 9, 23                             | , ,                                                                                                                               |
| Pages 57, 58 and 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03/24/22 | Pages 65                                | Added additional cabinet dimensions                                                                                               |
| 1990/21   Pages 57, 98 and 71   AVHS "G" panel dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09/28/21 | All                                     | Removed LON Controls                                                                                                              |
| AVHS "G" Panel Decoder   O1/18/21   Page 19, /1   AVHS "G" Panel Decoder   O1/18/21   Page 20   Added Riser Decoder   Updated Physical Data, added Hybrid Physical Data and Supply Air Opening and Grilles pages, changed measurements on Hose Kits and Stands page   Updated Engineering Specs   Updated Engineering Specs   Updated Engineering Specs   Updated Engineering Specs   Updated Gournent verbiage/layout, added Pre-Engineered section, introduced new 3-way water valve, risers attached with horizontal shipping, DDC chassis controls, thermostat options, new decoder format, and shipping tables   O1/11/11/9   Introduced Hybrid and E cabinet options   Added   Updated heating LAT.   Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.   Updated decoder and DMX wiring diagrams   Updated   U | 09/07/21 | Pages 57, 58 and 71                     |                                                                                                                                   |
| Updated Physical Data, added Hybrid Physical Data and Supply Air Opening and Grilles pages, changed measurements on Hose Kits and Stands page.  11/3/20 Page 84 Updated Engineering Specs Updated Engineering Specs Updated Engineering Specs Updated Gocument verbiage/layout, added Pre-Engineered section, introduced new 3-way water valve, risers attached with horizontal shipping, DDC chassis controls, thermostat options, new decoder format, and shipping tables  10/1/11/19 Pages 10,60,61,67 Misc. updates  10/1/11/19 Introduced Hybrid and E cabinet options Added  10/2/6/18 All updated heating LAT.  10/2/6/18 All Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.  10/9/2/6/18 All Updated decoder and DMX wiring diagrams  10/9/1/17 All Updated decoder and DMX wiring diagrams  10/9/1/17 Valve, normally open MWV, and configuring cabinet.  10/5/08/17 Hose Kit Decoder and sweat valve Updated  10/1/16 Document Design Update Updated  10/1/16 Page 33 Updated  10/9/1/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  10/08/15 Performance Data - Page 12 Updated  10/08/15 Performance Data - Page 12 Updated  10/08/15 Removed Electric Heat and vFlow Options Updated  10/1/15 All Updated  10/1/15 Decoder Updated  10/1/16 Decoder                                                                                                                                                                                                                 | 08/26/21 | Page 19, 71                             |                                                                                                                                   |
| Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01/18/21 | Page 20                                 | Added Riser Decoder                                                                                                               |
| Updated document verbiage/layout, added Pre-Engineered section, introduced new 3-way water valve, risers attached with horizontal shipping, DDC chassis controls, thermostat options, new decoder format, and shipping tables  05/14/19 Pages 10,60,61,67 Misc. updates  01/11/19 Introduced Hybrid and E cabinet options  09/26/18 All updated heating LAT.  Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.  09/26/18 All Updated decoder and DMX wiring diagrams  09/11/17 All Updated decoder and DMX wiring diagrams  07/7/17 Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve  11/15/16 Document Design Update  04/19/16 Page 33 Updated  04/19/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  09/01/15 Removed Electric Heat and vFlow Options Updated  11/14/15 All Updated  10/03/14 Edits - Page 56 Updated  11/03/14 Misc Edits Updated  11/03/14 Misc Edits Updated  11/03/14 Misc Edits Updated  11/03/14 Misc Edits Updated  10/04/19/16 Decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/08/21 | Pages Added                             | Opening and Grilles pages, changed measurements on Hose Kits                                                                      |
| introduced new 3-way water valve, risers attached with horizontal shipping, DDC chassis controls, thermostat options, new decoder format, and shipping tables  05/14/19 Pages 10,60,61,67 Misc. updates  07/11/19 Introduced Hybrid and E cabinet options Added  09/26/18 All updated heating LAT.  Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.  09/18/17 All Updated decoder and DMX wiring diagrams  08/18/17 All Updated information to new decoders  07/7/17 Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve Updated  11/15/16 Document Design Update Updated  04/19/16 Page 33 Updated  03/8/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  09/01/15 Removed Electric Heat and vFlow Options Updated  06/24/15 All Updated  06/03/15 Engineering Specifications Updated  11/14/15 All Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56 Updated  11/03/14 Misc Edits Updated  11/03/14 Misc Edits Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/3/20  | Page 84                                 | Updated Engineering Specs                                                                                                         |
| 01/11/19 Introduced Hybrid and E cabinet options  Added  09/26/18 All updated heating LAT.  09/26/18 All updated flush Mounted Return Air Panel.  09/11/17 All Updated decoder and DMX wiring diagrams  08/18/17 All Updated decoder and DMX wiring diagrams  08/18/17 All Updated information to new decoders  07/7/17 Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve Updated  01/15/16 Document Design Update Updated  04/19/16 Page 33 Updated  03/8/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  09/01/15 Removed Electric Heat and vFlow Options Updated  06/24/15 All Updated  10/6/3/15 Engineering Specifications Updated  11/14/15 All Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56 Updated  11/03/14 Misc Edits Updated  06/30/14 Decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09/25/20 | All                                     | introduced new 3-way water valve, risers attached with horizontal shipping, DDC chassis controls, thermostat options, new decoder |
| 09/26/18 All updated heating LAT.  09/26/18 All Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.  09/11/17 All Updated decoder and DMX wiring diagrams  08/18/17 All Updated information to new decoders  07/7/17 Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve Updated  11/15/16 Document Design Update Updated  04/19/16 Page 33 Updated  03/8/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  09/01/15 Removed Electric Heat and vFlow Options Updated  06/24/15 All Updated  11/14/15 All Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56 Updated  11/03/14 Misc Edits  06/30/14 Decoder Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05/14/19 | Pages 10,60,61,67                       | Misc. updates                                                                                                                     |
| Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.  09/1/17 All Updated decoder and DMX wiring diagrams  08/18/17 All Updated information to new decoders  07/7/17 Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve Updated  11/15/16 Document Design Update Updated  04/19/16 Page 33 Updated  03/8/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  09/01/15 Removed Electric Heat and vFlow Options Updated  06/24/15 All Updated  06/03/15 Engineering Specifications Updated  1/14/15 All Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56 Updated  1/03/14 Misc Edits Updated  06/30/14 Decoder Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01/11/19 | Introduced Hybrid and E cabinet options | Added                                                                                                                             |
| Updated   Upda | 09/26/18 | All                                     | updated heating LAT.                                                                                                              |
| 08/18/17 All Updated information to new decoders  07/7/17 Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve  11/15/16 Document Design Update  04/19/16 Page 33 Updated  03/8/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  09/01/15 Removed Electric Heat and vFlow Options Updated  06/24/15 All Updated  06/03/15 Engineering Specifications Updated  11/14/15 All Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56 Updated  11/03/14 Misc Edits Updated  06/30/14 Decoder Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09/26/18 | All                                     | · ·                                                                                                                               |
| Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.  Updated  Updated  Updated  Updated  Updated  O4/19/16 Document Design Update Updated  O4/19/16 Page 33 Updated  O3/8/16 Page 62 Edit Engineering Specs  10/08/15 Performance Data - Page 12 Updated  O9/01/15 Removed Electric Heat and vFlow Options Updated  O6/24/15 All Updated  O6/03/15 Engineering Specifications Updated  1/14/15 All Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56 Updated  O6/30/14 Decoder Updated  O6/30/14 Decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 09/1/17  | All                                     | Updated decoder and DMX wiring diagrams                                                                                           |
| valve, normally open MWV, and configuring cabinet.  05/08/17 Hose Kit Decoder and sweat valve  11/15/16 Document Design Update  04/19/16 Page 33  Updated  03/8/16 Page 62  Edit Engineering Specs  10/08/15 Performance Data - Page 12  Updated  09/01/15 Removed Electric Heat and vFlow Options  06/24/15 All  Updated  06/03/15 Engineering Specifications  Updated  1/14/15 All  Added vFlow, A Panel, ATP21W02, and Miscellaneous changes  12/16/14 Edits - Page 56  Updated  06/30/14 Decoder  Updated  Updated  Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08/18/17 | All                                     | Updated information to new decoders                                                                                               |
| 11/15/16         Document Design Update         Updated           04/19/16         Page 33         Updated           03/8/16         Page 62         Edit Engineering Specs           10/08/15         Performance Data - Page 12         Updated           09/01/15         Removed Electric Heat and vFlow Options         Updated           06/24/15         All         Updated           06/03/15         Engineering Specifications         Updated           1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07/7/17  |                                         | Updated                                                                                                                           |
| 04/19/16         Page 33         Updated           03/8/16         Page 62         Edit Engineering Specs           10/08/15         Performance Data - Page 12         Updated           09/01/15         Removed Electric Heat and vFlow Options         Updated           06/24/15         All         Updated           06/03/15         Engineering Specifications         Updated           1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05/08/17 | Hose Kit Decoder and sweat valve        | Updated                                                                                                                           |
| 03/8/16         Page 62         Edit Engineering Specs           10/08/15         Performance Data - Page 12         Updated           09/01/15         Removed Electric Heat and vFlow Options         Updated           06/24/15         All         Updated           06/03/15         Engineering Specifications         Updated           1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/15/16 | Document Design Update                  | Updated                                                                                                                           |
| 10/08/15         Performance Data - Page 12         Updated           09/01/15         Removed Electric Heat and vFlow Options         Updated           06/24/15         All         Updated           06/03/15         Engineering Specifications         Updated           1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04/19/16 | Page 33                                 | Updated                                                                                                                           |
| 09/01/15         Removed Electric Heat and vFlow Options         Updated           06/24/15         All         Updated           06/03/15         Engineering Specifications         Updated           1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03/8/16  | Page 62                                 | Edit Engineering Specs                                                                                                            |
| 06/24/15         All         Updated           06/03/15         Engineering Specifications         Updated           1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/08/15 | Performance Data - Page 12              | Updated                                                                                                                           |
| 06/03/15Engineering SpecificationsUpdated1/14/15AllAdded vFlow, A Panel, ATP21W02, and Miscellaneous changes12/16/14Edits - Page 56Updated11/03/14Misc EditsUpdated06/30/14DecoderUpdated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09/01/15 | Removed Electric Heat and vFlow Options | Updated                                                                                                                           |
| 1/14/15         All         Added vFlow, A Panel, ATP21W02, and Miscellaneous changes           12/16/14         Edits - Page 56         Updated           11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/24/15 | All                                     | Updated                                                                                                                           |
| 12/16/14       Edits - Page 56       Updated         11/03/14       Misc Edits       Updated         06/30/14       Decoder       Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/03/15 | Engineering Specifications              | Updated                                                                                                                           |
| 11/03/14         Misc Edits         Updated           06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/14/15  | All                                     | Added vFlow, A Panel, ATP21W02, and Miscellaneous changes                                                                         |
| 06/30/14         Decoder         Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/16/14 | Edits - Page 56                         | Updated                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/03/14 | Misc Edits                              | Updated                                                                                                                           |
| 06/05/14 Created                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06/30/14 | Decoder                                 | Updated                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/05/14 | Created                                 |                                                                                                                                   |



7300 S.W. 44th Street Oklahoma City, OK 73179 Phone: 405-745-6000 climatemaster.com

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014