

COMMERCIALTRANQUILITY® (SL) LOW-PROFILE SERIES

PRODUCT CATALOG

Part#: LC3059 | Revised: October 3, 2025

Models: SL 06-15 60Hz - R-454B

Models: SL 06-15

Table of Contents

- 3 Introduction
- 5 Features, Options, and Accessories
- iGate 2 Communicating Controls Powered by CXM2 Communicating Controls
- 7 iGate 2 Communicating (AWC) Thermostat
- 8 myUplink: Web and Mobile Interface
- 9 Selection Procedure
- 11 Model Nomenclature
- 12 Performance Data
 - 12 ASHRAE/AHRI/ISO 13256-1
 - 13 Selection Notes
 - 14 Performance Data
- 18 Corrections
 - 18 Airflow, Cooling, and Heating Tables
 - 19 Antifreeze Tables
 - 21 Water Options Table

- 22 Blower Performance
- 24 Electrical Data
- 25 Physical Data
- 26 Dimensional Data
 - 26 Tables
 - 27 Horizontal
 - 28 Service Access
 - 29 Supply Air Openings
- **30** Engineering Specifications
- **40** Revision History

Introduction

TRANQUILITY SL LOW-PROFILE SERIES

The Tranquility SL Low-Profile Series introduces the next generation in technology of commercial water-source heat pumps. Its unmatched low-profile height enables installation in ceiling spaces as low as 12-inches in height. This space-saving solution gives architects greater freedom when designing buildings. When compared to other horizontal water-source heat pumps on the market, the Tranquility SL allows building owners the ability to reduce floor-to-floor slab height, saving money in construction materials.

Available in horizontal configuration with sizes from ½-ton (1.76kW) through 1¼-ton (4.4kW), the Tranquility SL exceeds ASHRAE 90.1 efficiencies and is eligible for LEED® (Leadership in Energy and Environmental Design) points. Integrated water control options save system watts by preventing over pumping both when the unit is operating or idle. EC fan motors maximize the systems' airflow efficiency. CXM2 Communicating Controls offers reduced startup and commissioning time by providing an easy to read gateway into the systems' operating conditions. The low-profile product series design is paired with industry exclusive serviceability features along with many options for increased application flexibility and system efficiency.

The Tranquility SL is offered in a 9-inch height cabinet. This allows water-source heat pump systems to be installed in mechanical ceiling spaces previously only serviced by other technologies. System design engineers now have greater flexibility when choosing highly efficient HVAC systems.

Braze-plate heat exchangers increase heat transfer over a smaller area. They are lightweight and compact when compared to traditional coaxial heat exchangers. The technology reduces the space required for the unit heat exchanger inside the product allowing for a feature-driven compact design. An easy-to-access internally mounted water strainer helps protect the heat exchanger from contaminants that may get in the water loop and a water flow safety switch provides protection to the heat exchanger against no water/low water flow conditions.

ClimateMaster's double isolation compressor mounting system paired with the industry's first ever unit-integrated sound attenuation box makes the Tranquility SL one of the quietest units on the market. Compressors are mounted on specially engineered sound-tested EPDM grommets to heavy gauge mounting rails, which are then further isolated from the cabinet base with EPDM grommets for maximized compressor sound attenuation. With the unit-integrated sound attenuator, the blower motor is mounted on a heavy gauge plate which is then isolated internally in the unit from the supply air duct work, removing the hard connection between the two system components and significantly reducing airflow sound transmission.

The Tranquility SL introduces an industry first innovation in water-source heat pump access and serviceability. You can access unit controls, electrical components, water components/ circuit, refrigeration components/circuit, optional power disconnect, service tool connection, drain pan, air coil, air filter, water strainer, and blower motor assembly from the bottom of the unit. An internally framed construction design allows the unit to stay rigid even when access panels are removed. The unique design of the Tranquility SL cabinet construction also allows it to be serviced in many traditional ways as well. Unit controls can swivel to be accessed from the bottom, front, or top (tabletop service) of the unit. Service panels located below and around the unit allow access to water, electrical, refrigerant, and blower system components. This greatly increases the installer and service technicians' ability to access and interface the water-source heat pump while it is installed in the ceiling.

Introduction

iGate® 2 technology provides technicians an interface into the operation of the system in real time without the need for hard tooling. On-board advanced controls communicate the key operating system temperatures enabling technicians to startup, commission, and service the equipment remotely by smart phone or website via the cloud. Communication can also be done at the unit via a Wireless Service Tool. Not only does iGate 2 monitor current performance, it also allows the functionality to make system adjustments and captures operating conditions at time of fault. All this information is displayed in an easy to read format maximizing the usability of the experience.

The Tranquility SL's bottom blower access design is an industry-first innovation and changes how users interact with the product. The complete blower assembly can be slid down from the bottom of the unit. A built in safety latch allows the blower assembly to be removed after the access panel is removed. The assembly slides down to rest on a service rail where the technician can service the motor or remove the whole assembly by disconnecting one electrical quick connector.

When working on horizontally installed products, it can be difficult to reach the drain pan for servicing without removing ductwork or dropping the unit. The Tranquility SL design rethinks the way technicians access drain pans. The drain pan can be accessed/cleaned through a bottom access panel and can be removed/replaced from the bottom of the unit without removing any duct work or dropping the unit.

The Tranquility SL Low-Profile Series water-source heat pump introduces new technology into the market that is unmatched by others. The serviceability features set a new standard that contractors will come to expect from the worlds' leading supplier of water-source heat pumps. The Tranquility SL is designed to meet the challenges of today's HVAC demands with one of the most innovative products available on the market.

Features, Options, and Accessories

FEATURES

- Sizes 06 (½ ton, 1.76 kW) through 15 (1¼ tons, 4.4 kW)
- All sizes are a low 9-inches (22.9 cm) in height
- Environmentally friendly R-454B low-GWP refrigerant
- Exceeds ASHRAE 90.1 efficiencies
- Bottom access unit controls, electrical components, water components/circuit, refrigeration components/circuit, power disconnect (optional), service tool connection, drain pan, air coil, air filter, water strainer, and blower motor assembly
- Constant Torque (CT) high efficiency EC blower motor
- Brazed-Plate Heat Exchanger
- CXM2 Communicating Controls:
 - Multiple communication pathways for unit access and diagnosis:
 - Cloud-based remote monitoring via iGate 2 Communicating (AWC) Thermostat
 - Connect directly to the system with the Wireless Service Tool
 - Provides real-time unit operating conditions
 - Reduces startup, commissioning, and service time by providing key system temperatures electronically
 - Captures operating conditions in the event of a safety shutdown
- Unit Performance Sentinel performance monitoring system
- Nine standard safeties including water flow confirmation switch
- Field configurable controls access from the bottom, front, or top of the unit
- Robust service tool connection located on the unit outside corner post
- Internally framed galvanized-steel construction
- Integrally designed sound reducing attenuator box
- Unique double isolation compressor mounting for quiet operation
- Insulated divider and separate compressor/air handler compartments

- TXV metering device
- 20 mesh water strainer
- Easy to clean rust prohibitive stainless steel drain pans with condensate overflow sensor
- Field configurable supply air opening(s)

OPTIONS

- Industry leading UltraQuiet sound-attenuation package
- Autoflow regulators that limit water flow to the unit preventing system over pumping
- Two-way motorized water valve that prevents water flow through the unit when it is not in operation increasing system pumping efficiency
- Corrosive resistant tin-plated or E-coated air coils
- Internally mounted water pump for single-pipe systems
- Robust high pressure flow switch for system loop pressure designs above 145 psi
- BACnet, Modbus, and Johnson Controls N2 compatibility options for Building Management Systems (BMS)
- Bottom access unit integrated power disconnect
- 2-inch filter frames to support higher indoor air quality filters
- Factory configured supply air opening(s)
- Extended range insulation for geothermal applications

ACCESSORIES

- Braided-hose kits in various lengths with optional water valve, PT plugs, blowdown valve, flow regulator, and strainer
- Selection of thermostats including programmable, Wi-Fi, and color touchscreen
- 1-inch Merv 8 filter
- 2-inch Merv 8 or 13 filters
- Aesthetically pleasing wall sensors for connection to BMS (MPC) controls

iGate 2 Communicating Controls Powered by CXM2 Communicating Controls

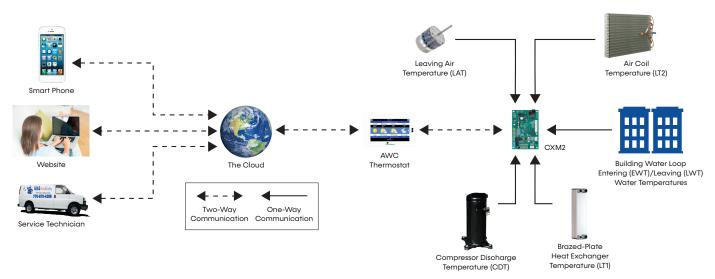
Models: SL 06-15

iGATE 2 COMMUNICATION – CLOUD CONNECTED, WEB-ENABLED INFORMATION GATEWAY TO MONITOR, CONTROL, AND DIAGNOSE YOUR SYSTEM

iGate 2 Communication – Cloud connected, webenabled information gateway to monitor, control, and diagnose your system.

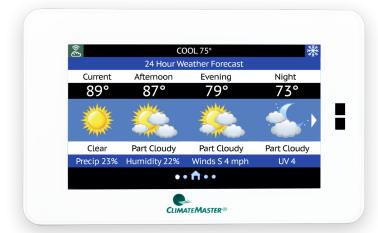
The Tranquility SL is equipped with industry-first, iGate 2 communication information gateway that allows users to interact with their water-source system in easy to read clear language.

Monitor/Configure – From the myUplink
PRO website/mobile app paired with an
AWC Thermostat or a Wireless Service Tool directly
at the unit, installers can configure the following:
Unit family, size, accessory configuration, and
demand reduction (optional, to limit unit operation
during peak times). Users can look up the current
system status, temperature sensor readings, and
operational status of the blower.


Precise Control – The new CXM2 enables intelligent, two-way communication between the CXM2 and smart components like the AWC Thermostat and Wireless Service Tool. CXM2 Communicating Controls uses information received from the temperature sensors to precisely control operation to deliver high efficiency, reliability and increased comfort.

Diagnostics – iGate 2 takes diagnosing watersource heat pump units to a next level of simplicity, by providing a dashboard of system and fault information, in clear language, on the AWC Thermostat, Wireless Service Tool, and the web portal/mobile app on the internet.

iGate 2 Service Warnings notify the homeowner and contractor of a fault and displays fault descriptions by app notifications/email with possible causes. Additionally, the current system status can be viewed graphically on the web portal and mobile app.


In iGate 2 Service Mode, service personnel can access fault descriptions, see possible causes, and most importantly, see the conditions (temp, flow, i/o conditions, configuration) at the time of the fault. Manual Operation mode enables service personnel to manually command operation for any of the thermostat outputs, blower speed, to help troubleshoot specific components. Manual Operation mode can be conducted at the unit with an AWC Thermostat using the mobile app, using the Wireless Service Tool, or remotely with mobile app/website when the AWC Thermostat controls are used.

With an iGate 2 communicating system, users and contractors have a web-enabled gateway to system information never before available and exclusive to ClimateMaster products.

iGate 2 Communicating (AWC) Thermostat

iGATE 2 COMMUNICATION – CLOUD CONNECTED, WEB-ENABLED INFORMATION GATEWAY TO MONITOR, CONTROL, AND DIAGNOSE YOUR SYSTEM

The iGate 2 Communicating (AWC) Thermostat is innovating the future of comfort technology, one building at a time. The inspired design of the touch screen interface allows you to see real-time data for the efficiency and health of your system, with early warnings for potential system faults. The cloud based information gateway allows technicians to remotely diagnose system issues before occupants even know there is a problem. Control and monitor the system in your home or business from anywhere in the world with an easy to use app on your phone.

Features with Efficiency in Mind

Touchscreen Interface

A brilliantly customizable touchscreen monitor for simple control.

Seamless Integration

Between your AWC Thermostat and comfort system.

(Mobile) Remote System Control

Control temperature and schedule from anywhere in the world.

Early Fault Warnings

Alerts the building owner and the contractor of potential system faults in the future.

Remote Diagnostics

Enable the contractor to remotely diagnose system issues, adjust system settings, and reset faults.

Real-Time Operations Data and System Schematics

Access simply via the myUplink PRO Account and web portal to view system diagrams with current operating temperatures.

Revenue Stream

HVAC professionals can offer owners service contracts with remote monitoring and diagnostic capabilities without the large expense of a building management system.

myUplink: Web and Mobile Interface

HVAC Professional | User Experience

iGate 2 establishes a two-way link between the AWC Thermostat and the cloud, adding significant value for both residential and commercial customers. Our new thermostat works with your customers' Tranquility comfort systems to

provide the most efficient link between their system and your services. The customizable monitoring from the myUplink PRO web portal or phone app account allows for continuous system monitoring, analysis, repair recognition, and early warnings for potential system faults that are sent to you and your customer.

Benefits

- Remote login from anywhere, anytime from any internet connected device
- View system fault history with possible root causes
- Information is available for contractors to troubleshoot and diagnose systems remotely
- Secure internet connection keeps homeowner information private
- Access thermostat(s) through Android and iPhone mobile apps

Homeowner | User Experience

iGate 2 advanced unit controls enable a two-way communication link for critical system information between the unit and the cloud. From any internet connected device or smart phone, building owners can control and monitor their systems

from anywhere in the world. iGate 2 offers building owners peace of mind their systems are operating at peak performance with advanced operational performance issue notifications. HVAC professionals get notifications when systems are operating out of range. They can log in remotely to check system faults, review current operating conditions, and diagnose issues remotely. This gives the HVAC technician the upper hand when showing up to perform service, saving time which in turn, saves money.

Benefits

- Communicates personal settings and reminders through the iGate 2 communication system
- Easy-to-use, full-color, high-resolution user interface
- Sleek, intuitive control panel
- Secure internet connection keeps your information private
- Contains unit model, serial number and your HVAC professionals contact information
- System monitoring automatically contacts HVAC system providers when service is needed

Selection Procedure

Reference Calculations

Heating	Cooling					
LWT = EWT - HE	LWT = EWT + HR LC = TC-SC					
GPM x Constant	GPM x Constant					
LAT = EAT + HC	LAT (DB) = EAT (DB) - SC S/T = SC					
CFM x 1.08	CFM x 1.08					

Constant = 500 for water, 485 for antifreeze

Conversion Table - to convert inch-pound (English) to S-I (Metric)

Airflow	Water Flow	External Static Pressure	Water Pressure Drop	
Airflow (L/s) = CFM \times 0.472	Water Flow (L/s) = GPM x 0.0631	ESP (Pa) = ESP (in of wg) \times 249	PD (kPa) = PD (ft of hd) x 2.99	

Legend and Glossary of Abbreviations

Abbreviations	Descriptions
Btuh	Btu (British Thermal Unit) per hour
BMS	Building Management System
CDT	Compressor discharge temperature
CFM	Airflow, cubic feet per minute
COP	Coefficient of performance = Btuh output/Btuh input
CT EC	Electronically commutated constant torque blower motor
CV EC	Electronically commutated constant volume blower motor
DB	Dry bulb temperature, °F
DT	Delta T
EAT	Entering air temperature
EER	Energy efficient ratio = Btuh output/Watt input
ESP	External static pressure, inches w.g.
EWT	Entering water temperature
FPT	Female pipe thread
GPM	Water flow in U.S., gallons per minute
HC	Air heating capacity, Btuh
HE	Total heat of extraction, Btuh
HGRH	Hot Gas Reheat

Abbreviations	Descriptions			
HR	Total heat of rejection, Btuh			
HWG	Hot water generator (desuperheater) capacity, MBtuh			
kW	Total power unit input, kilowatts			
LAT	Leaving air temperature, °F			
LC	Latent cooling capacity, Btuh			
LOC	Loss of charge			
LWT	Leaving water temperature, °F			
MBtuh	1,000 Btu per hour			
MPT	Male pipe thread			
MWV	Motorized water valve			
PSC	Permanent split capacitor			
RDS	Refrigerant Detection System			
SC	Sensible cooling capacity, Btuh			
S/T	Sensible to total cooling ratio			
TC	Total cooling capacity, Btuh			
TD or delta T	Temperature differential			
VFD	Variable frequency drive			
WB	Wet bulb temperature, °F			
WPD	Waterside pressure drop, psi or feet of head			

Selection Procedure

USE THE FOLLOWING SELECTION STEPS

- Determine the actual heating and cooling loads at the desired dry bulb and wet bulb conditions.
- 2. Obtain the following design parameters: Entering water temperature, water flow rate in GPM, airflow in CFM, water flow pressure drop and design wet and dry bulb temperatures. Airflow CFM should be between 300 and 450 CFM per ton. Unit water pressure drop should be kept as close as possible to each other to make water balancing easier. Go to the appropriate tables and find the proper indicated water flow and water temperature.
- Select a unit based on total and sensible cooling conditions. Select a unit which is closest to, but no larger than, the actual cooling load.
- Enter tables at the design water flow and water temperature. Read the total and sensible cooling capacities (Note: interpolation is permissible, extrapolation is not).
- 5. Read the heating capacity. If it exceeds the design criteria it is acceptable. It is quite normal for watersource heat pumps to be selected on cooling capacity only since the heating output is usually greater than the cooling capacity.
- 6. Determine the correction factors associated with the variable factors of dry bulb and wet bulb.

Corrected Total Cooling = tabulated total cooling x wet bulb correction.

Corrected Sensible Cooling = tabulated sensible cooling x wet/dry bulb correction.

- 7. Compare the corrected capacities to the load requirements. Normally if the capacities are within 10% of the loads, the equipment is acceptable. It is better to undersize than oversize, as undersizing improves humidity control, reduces sound levels and extends the life of the equipment.
- 8. When completed, calculate water temperature rise and assess the selection. If the units selected are not within 10% of the load calculations, then review what effect changing the GPM, water temperature and/or air flow and air temperature would have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat the procedure. Remember, when in doubt, undersize slightly for best performance.

EXAMPLE EQUIPMENT SELECTION FOR COOLING

Step 1: Load Determination

Assume we have determined that the appropriate cooling load at the desired dry bulb 80°F and wet bulb 65°F conditions is as follows:

Total Cooling	12,000 Btuh
Sensible Cooling	7,500 Btuh
Entering Air Temp75°F D	rv Bulb/65°F Wet Bulb

Step 2: Design Conditions

Similarly, we have also obtained the following design parameters:

Entering Water Temp8	O°F
Water Flow (Based on 10°F rise in temp)3.0 G	PM
Airflow	FM

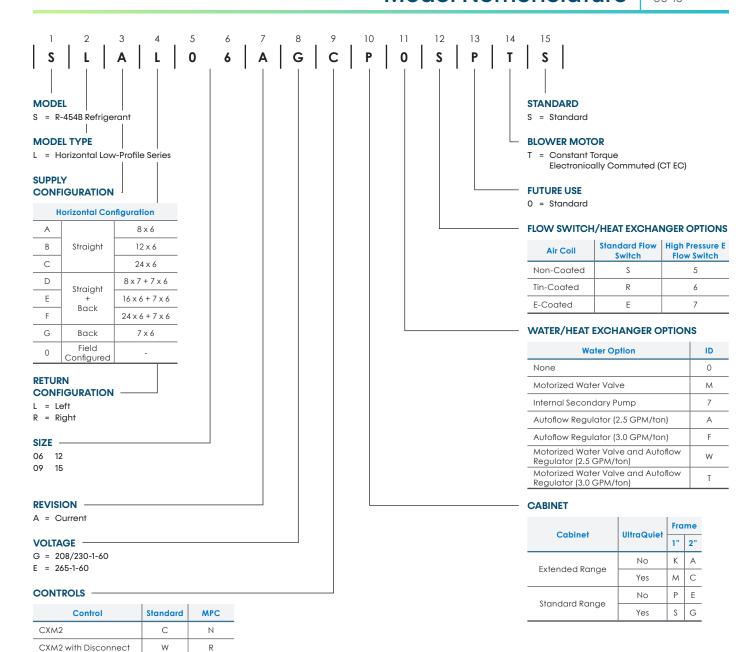
Steps 3, 4 and 5: HP Selection

After making our preliminary selection (SL012), we enter the tables at design water flow and water temperature and read Total Cooling, Sensible Cooling and Heat of Rejection capacities:

Total Cooling	12,700 Btuh
Sensible Cooling	9,500 Btuh
Heat of Rejection	15 500 Btub

Steps 6 and 7: Entering Airflow Corrections

Next, we determine our correction factors.


Corrected Values	Table		Ent Air		Airflow		Corrected
Corrected = Total Cooling	12,700	×	0.96	×	0.93	=	11,339
Corrected = Sensible Cooling							
Corrected = Heat of Rejection	15,500	Χ	0.98	Χ	0.97	=	14,734

Step 8: Water Temperature Rise Calculation and Assessment

Actual Temperature Rise	,0	F
-------------------------	----	---

When we compare the Corrected Total Cooling and Corrected Sensible Cooling values with our load requirements stated in Step 1, we discover that our selection is within ± 10% of our sensible load requirement. Furthermore, we see that our Corrected Total Cooling value is within 1,000 Btuh the actual indicated load.

Model Nomenclature

Use ClimateMaster's selection software at https://ccgencompass.climatecontrolgroup.com/main to configure your Tranquility SL model.

ASHRAE/AHRI/ISO 13256-1 English (I-P) Units

		Water-Loop Heat Pump				Ground-Loop Heat Pump			
Model	Motor	Cooling of 1		Heating 68°F		Full Cooling 77°F		Full Heating 32°F	
	Type	Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР	Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР
SL06	EC	6,000	16.9	7,000	5.1	6,300	20.5	4,600	3.6
SL09	EC	8,800	16.8	9,900	4.6	9,300	20.3	6,600	3.4
SL12	EC	11,300	14.8	13,200	4.6	11,900	17.4	8,900	3.4
SL15	EC	13,800	15.4	15,500	4.6	14,400	17.8	10,600	3.4

- Where dual voltages are available, ratings are based on the lower voltage setting.
- Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature. Heating capacities based upon 68°F DB, 59°F WB entering air temperature.
- Ground-Loop Heat Pump ratings based on 15% antifreeze solution.

ASHRAE/AHRI/ISO 13256-1 Metric (S-I) Units

		Water-Loop Heat Pump				Ground-Loop Heat Pump			
Model	Motor	Cooling	ooling 30°C Heating 20°C		20°C	Full Cooli	ng 25°C	Full Heatin	g 0°C
	Type	Capacity kW	EER W/W	Capacity kW	СОР	Capacity kW	EER W/W	Capacity kW	СОР
SL06	EC	2	5.0	2	5.1	2	6.0	1	3.6
SL09	EC	3	4.9	3	4.6	3	6.0	2	3.4
SL12	EC	3	4.3	4	4.6	3	5.1	3	3.4
SL15	EC	4	4.5	5	4.6	4	5.2	3	3.4

- Where dual voltages are available, ratings are based on the lower voltage setting.
- Cooling capacities based upon 27°C DB, 19°C WB entering air temperature. Heating capacities based upon 20°C DB, 15°C WB entering air temperature.
- Ground-Loop Heat Pump ratings based on 15% antifreeze solution.

For operation in the shaded area when water is used instead of an antifreeze solution, the LWT (Leaving Water Temperature) must be calculated. Flow must be maintained to a level such that the LWT is maintained above 40°F (4.4°C) when the JW3 jumper is not clipped (see example below). Otherwise, use appropriate levels of a proper antifreeze solution in systems with leaving water temperatures of 40°F (4.4°C) or below and clip the JW3 jumper. This is due to the potential of the refrigerant temperature being as low as 32°F (0°C) with 40°F (4.4°C) LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. Never clip JW3 for standard-range equipment or systems without antifreeze.

Exam	nl	۵.
LAGIII	יש	ᠸ.

At 50°F EWT (Entering Water Temperature) and 1.5 GPM/ton, a 3-ton unit has a HE of 22,500 Btuh. To calculate LWT, rearrange the formula for HE as follows:

					_	
			Heat	ing - EAT	70°F	
	EER	нс	Power kW	HE	LAT	COP
lot	Recomm	ended				
		4.0	0.45	2.5	84.6	2.6
8.6	27.4	4.6	0.46	3.0	86.8	2.9
8.6	31.0	4.8	0.47	3.2	87.8	3.0
8.6	33.0	4.9	0.47	3.3	88.3	3.1
8.4	23.3	5.4	0.48	3.8	90.2	3.3
8.5	26.3	5.7	0.49	4.0	91.4	3.4
8.6	27.9	5.9	0.49	4.2	92.1	3.5
8.2	19.8	6.2	0.50	4.5	93.6	3.7
4	22.3	6.6	0.50	4.9	95.0	3.8
	23.7	6.8	0.51	5.0	95.8	3.9
	16.7	7.0	0.51	5.3	96.9	4.0
	8,8	7.4	0.52	5.6	98.5	4
		7.6	0.52	5.8	99.3	
			0.53	6.0		

 $HE = TD \times GPM \times 500$, where HE = Heat of Extraction (Btuh); TD = temperature difference (EWT - LWT) and GPM = U.S. Gallons per Minute.

 $TD = HE / (GPM \times 500)$

 $TD = 22,500 / (4.5 \times 500)$

 $TD = 10^{\circ}F$

LWT = EWT - TD

LWT = 50 - 10 = 40°F

In this example, as long as the EWT does not fall below 50°F, the system will operate as designed. For EWTs below 50°F, higher flow rates will be required (open loop systems, for example, require at least 2 GPM/ton when EWT is below 50°F).

EWT		WPD			COOLII	NG - EAT	80/67°F			Heating :	- EAT 70°I	:
°F	FLOW GPM	PSI	FT	TC	sc	kW	HR	EER	нс	kW	СОР	HE
20			Opera	tion Not	Recomm	ended						
			Орола			JJ.	1		3.6	0.4	2.5	2.2
	1.0	1.4	3.2	6.5	4.4	0.2	7.3	30.1	4.3	0.4	3.0	2.9
30	1.5	1.9	4.5	6.6	4.5	0.2	7.3	32.5	4.4	0.4	3.0	3.0
	2.0	2.5	5.7	6.7	4.5	0.2	7.4	35.1	4.6	0.4	3.1	3.1
	1.0	0.9	2.0	7.0	5.1	0.2	7.9	29.7	5.2	0.4	3.5	3.7
40	1.5	1.2	2.8	7.1	5.1	0.2	7.9	31.8	5.3	0.4	3.6	3.8
	2.0	1.6	3.6	7.2	5.1	0.2	7.9	34.2	5.4	0.4	3.7	3.9
	1.0	0.6	1.3	7.2	5.4	0.3	8.1	27.1	6.0	0.4	4.0	4.5
50	1.5	0.8	1.9	7.3	5.4	0.3	8.1	28.9	6.1	0.4	4.1	4.6
	2.0	1.0	2.4	7.4	5.4	0.2	8.2	30.8	6.2	0.4	4.1	4.7
	1.0	0.4	1.0	7.0	5.5	0.3	8.1	23.4	6.6	0.4	4.4	5.1
60	1.5	0.6	1.4	7.1	5.5	0.3	8.1	24.8	6.7	0.4	4.4	5.2
	2.0	0.8	1.9	7.2	5.5	0.3	8.1	26.3	6.9	0.4	4.5	5.3
	1.0	0.4	0.9	6.7	5.4	0.3	7.9	19.6	7.1	0.5	4.6	5.6
70	1.5	0.6	1.3	6.8	5.4	0.3	7.9	20.6	7.3	0.5	4.7	5.7
	2.0	0.7	1.7	6.9	5.4	0.3	7.9	21.7	7.4	0.5	4.8	5.8
	1.0	0.4	1.0	6.2	5.1	0.4	7.5	15.9	7.5	0.5	4.8	5.9
80	1.5	0.6	1.4	6.3	5.2	0.4	7.5	16.7	7.6	0.5	4.9	6.0
	2.0	0.8	1.9	6.4	5.2	0.4	7.6	17.5	7.7	0.5	5.0	6.2
	1.0	0.5	1.1	5.6	4.8	0.4	7.1	12.8	7.6	0.4	5.0	6.1
90	1.5	0.7	1.6	5.7	4.9	0.4	7.2	13.4	7.7	0.5	5.0	6.2
	2.0	0.9	2.1	5.8	4.9	0.4	7.2	14.0	7.9	0.5	5.1	6.3
	1.0	0.5	1.1	5.1	4.5	0.5	6.7	10.3				
100	1.5	0.7	1.6	5.1	4.5	0.5	6.8	10.7				
	2.0	0.9	2.1	5.2	4.6	0.5	6.8	11.2				
	1.0	0.4	0.9	4.6	4.2	0.6	6.5	8.3				
110	1.5	0.6	1.3	4.7	4.3	0.5	6.5	8.7				
	2.0	0.8	1.8	4.7	4.3	0.5	6.5	9.1				
	1.0	0.2	0.5	4.3	4.1	0.6	6.3	7.0				
120	1.5	0.3	0.7	4.3	4.1	0.6	6.4	7.3				
	2.0	0.4	1.0	4.4	4.1	0.6	6.4	7.6				

Notes:

- Interpolation is permissible; extrapolation is not.
- All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. All performance is based upon the lower voltage of dual voltage rated units.

- Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. Operation below 40°F (4.4°C) is based upon 20% methanol antifreeze solution.

 Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit.
- See performance correction tables for operating conditions other than those listed above.
- See Performance Data Selection Notes for operation in the shaded areas.
- Performance capacities shown in thousands of Btuh.
- For unit operation in the shaded area when LWT is below 40°F (4.4°C), use antifreeze and clip the JW3 jumper on the CXM2. This is due to the potential of the refrigerant temperature being as low as 32°F (0°C) with 40°F (4.4°C) LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. Never clip JW3 for standard range equipment or systems without antifreeze.

EWT		WPD			COOLII	NG - EAT	80/67°F			Heating -	- EAT 70°I	Heating - EAT 70°F			
°F	FLOW GPM	PSI	FT	TC	sc	kW	HR	EER	нс	kW	СОР	HE			
20			Opera	tion Not I	Recomm	ended									
			Opc.u			caca	ı		5.5	0.6	2.7	3.4			
	1.4	1.9	4.4	10.2	6.5	0.3	11.2	34.8	6.3	0.6	3.0	4.2			
30	2.1	2.9	6.7	10.3	6.5	0.3	11.2	37.3	6.4	0.6	3.0	4.3			
	2.8	4.0	9.2	10.4	6.5	0.3	11.3	39.9	6.6	0.6	3.1	4.4			
	1.4	1.6	3.7	10.4	7.0	0.3	11.5	31.5	7.3	0.6	3.4	5.1			
40	2.1	2.6	6.0	10.5	7.0	0.3	11.5	33.3	7.5	0.6	3.4	5.3			
	2.8	3.7	8.5	10.5	7.0	0.3	11.6	35.5	7.6	0.6	3.5	5.4			
	1.4	1.4	3.2	10.3	7.2	0.4	11.6	27.2	8.3	0.7	3.7	6.0			
50	2.1	2.5	5.8	10.4	7.2	0.4	11.6	28.8	8.4	0.7	3.8	6.2			
	2.8	3.6	8.3	10.5	7.2	0.3	11.6	30.3	8.6	0.7	3.8	6.3			
	1.4	1.3	3.0	10.0	7.3	0.4	11.5	23.1	9.2	0.7	4.0	6.9			
60	2.1	2.3	5.3	10.1	7.3	0.4	11.5	24.2	9.3	0.7	4.0	7.0			
	2.8	3.3	7.6	10.2	7.3	0.4	11.5	25.4	9.5	0.7	4.1	7.1			
	1.4	1.3	3.0	9.6	7.2	0.5	11.2	19.3	10.0	0.7	4.3	7.6			
70	2.1	2.3	5.3	9.6	7.2	0.5	11.3	20.1	10.1	0.7	4.3	7.8			
	2.8	3.3	7.6	9.7	7.2	0.5	11.3	21.0	10.3	0.7	4.3	7.9			
	1.4	1.3	3.0	9.0	7.0	0.6	10.9	15.9	10.7	0.7	4.5	8.3			
80	2.1	2.3	5.3	9.1	7.0	0.5	11.0	16.5	10.9	0.7	4.5	8.4			
	2.8	3.3	7.6	9.2	6.9	0.5	11.0	17.2	11.0	0.7	4.5	8.6			
	1.4	1.3	3.0	8.4	6.6	0.6	10.5	13.1	11.3	0.7	4.6	8.9			
90	2.1	2.3	5.3	8.4	6.6	0.6	10.6	13.5	11.5	0.7	4.7	9.0			
	2.8	3.3	7.6	8.5	6.6	0.6	10.6	14.1	11.7	0.7	4.7	9.2			
	1.4	1.3	3.0	7.7	6.3	0.7	10.2	10.7							
100	2.1	2.2	5.1	7.8	6.3	0.7	10.2	11.1							
	2.8	3.2	7.4	7.9	6.3	0.7	10.2	11.5							
	1.4	1.2	2.8	7.1	5.9	0.8	9.8	8.8							
110	2.1	2.2	5.1	7.2	5.9	0.8	9.8	9.1							
	2.8	3.2	7.4	7.3	5.9	0.8	9.9	9.5							
	1.4	1.1	2.5	6.5	5.5	0.9	9.6	7.4							
120	2.1	2.1	4.9	6.6	5.5	0.9	9.6	7.6							
	2.8	3.1	7.2	6.7	5.5	0.9	9.6	7.9							

Notes:

- Interpolation is permissible; extrapolation is not.
- All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. All performance is based upon the lower voltage of dual voltage rated units.

- Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated.
- Operation below 40°F (4.4°C) is based upon 20% methanol antifreeze solution.

 Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit.
- See performance correction tables for operating conditions other than those listed above.
- See Performance Data Selection Notes for operation in the shaded areas.
- Performance capacities shown in thousands of Btuh.
- For unit operation in the shaded area when LWT is below 40°F (4.4°C), use antifreeze and clip the JW3 jumper on the CXM2. This is due to the potential of the refrigerant temperature being as low as 32°F (0°C) with 40°F (4.4°C) LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. Never clip JW3 for standard range equipment or systems without antifreeze.

EWT		WPD			COOLII	NG - EAT	80/67°F		I	Heating -	- EAT 70°F	
°F	FLOW GPM	PSI	FT	TC	SC	kW	HR	EER	нс	kW	СОР	HE
20			Opera	tion Not I	Recomm	ended						
			·						7.1	0.8	2.6	4.4
	1.5	2.6	6.0	13.2	8.6	0.5	14.7	28.6	8.4	0.8	3.1	5.6
30	2.3	4.3	9.8	13.4	8.6	0.4	14.8	31.0	8.7	0.8	3.1	5.9
	3.0	6.0	13.7	13.6	8.7	0.4	14.9	33.9	9.0	0.8	3.2	6.2
	1.5	2.4	5.4	13.5	9.2	0.5	15.3	26.2	9.8	0.8	3.5	7.0
40	2.3	4.0	9.2	13.7	9.2	0.5	15.4	28.2	10.1	0.8	3.6	7.3
	3.0	5.6	13.0	13.9	9.3	0.5	15.5	30.6	10.4	0.8	3.6	7.6
	1.5	2.2	5.0	13.5	9.5	0.6	15.5	23.4	11.0	0.8	3.8	8.1
50	2.3	3.8	8.7	13.7	9.6	0.6	15.6	25.0	11.3	0.9	3.9	8.4
	3.0	5.4	12.4	13.9	9.6	0.5	15.7	26.9	11.6	0.9	4.0	8.7
	1.5	2.1	4.8	13.3	9.6	0.7	15.5	20.4	11.9	0.9	4.1	9.0
60	2.3	3.6	8.4	13.5	9.6	0.6	15.6	21.7	12.2	0.9	4.1	9.3
	3.0	5.2	12.0	13.7	9.6	0.6	15.7	23.2	12.5	0.9	4.2	9.6
	1.5	2.0	4.6	12.8	9.4	0.7	15.3	17.5	12.8	0.9	4.3	9.8
70	2.3	3.5	8.2	13.0	9.5	0.7	15.4	18.5	13.1	0.9	4.3	10.0
	3.0	5.0	11.8	13.2	9.5	0.7	15.5	19.7	13.4	0.9	4.4	10.3
	1.5	1.9	4.4	12.1	9.1	0.8	14.9	14.9	13.6	0.9	4.5	10.5
80	2.3	3.5	8.0	12.4	9.2	0.8	15.0	15.7	13.9	0.9	4.5	10.8
	3.0	5.1	11.6	12.6	9.2	0.8	15.1	16.7	14.2	0.9	4.6	11.1
	1.5	1.9	4.3	11.4	8.7	0.9	14.5	12.6	14.5	0.9	4.7	11.4
90	2.3	3.4	7.8	11.6	8.8	0.9	14.6	13.2	14.8	0.9	4.7	11.7
	3.0	4.9	11.3	11.8	8.8	0.8	14.7	14.0	15.1	0.9	4.8	11.9
	1.5	1.8	4.2	10.6	8.3	1.0	14.0	10.6				
100	2.3	3.3	7.7	10.8	8.3	1.0	14.1	11.1				
	3.0	4.8	11.2	11.0	8.3	0.9	14.2	11.7				
	1.5	1.7	4.0	9.7	7.8	1.1	13.5	8.9				
110	2.3	3.3	7.5	9.9	7.8	1.1	13.6	9.3				
	3.0	4.8	11.0	10.1	7.9	1.0	13.7	9.8				
	1.5	1.7	3.8	9.0	7.4	1.2	13.0	7.5				
120	2.3	3.2	7.3	9.2	7.4	1.2	13.1	7.9				
	3.0	4.7	10.8	9.4	7.4	1.1	13.2	8.3				

Notes:

- Interpolation is permissible; extrapolation is not.
- All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. All performance is based upon the lower voltage of dual voltage rated units.

- Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. Operation below 40°F (4.4°C) is based upon 20% methanol antifreeze solution.

 Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit.
- See performance correction tables for operating conditions other than those listed above.
- See Performance Data Selection Notes for operation in the shaded areas.
- Performance capacities shown in thousands of Btuh.
- For unit operation in the shaded area when LWT is below 40°F (4.4°C), use antifreeze and clip the JW3 jumper on the CXM2. This is due to the potential of the refrigerant temperature being as low as 32°F (0°C) with 40°F (4.4°C) LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. Never clip JW3 for standard range equipment or systems without antifreeze.

EWT		WPD			COOLII	NG - EAT	80/67°F		I	Heating -	- EAT 70°I	
°F	FLOW GPM	PSI	FT	TC	sc	kW	HR	EER	нс	kW	СОР	HE
20			Opera	tion Not	Recomm	ended						
			Орола			J	1		8.5	0.9	2.9	5.6
	2.0	3.3	7.6	15.1	10.0	0.5	16.8	30.3	9.5	0.9	3.2	6.5
30	3.0	5.6	12.9	15.3	10.0	0.5	16.9	32.6	9.8	0.9	3.2	6.8
	4.0	7.8	18.0	15.4	10.0	0.4	16.9	35.1	10.0	0.9	3.3	7.0
	2.0	3.0	6.8	16.1	11.2	0.5	18.0	29.4	11.2	0.9	3.6	8.1
40	3.0	5.3	12.2	16.3	11.2	0.5	18.0	31.4	11.4	0.9	3.7	8.3
	4.0	7.5	17.2	16.4	11.2	0.5	18.1	33.5	11.6	0.9	3.8	8.5
	2.0	2.7	6.3	16.4	11.9	0.6	18.5	26.8	12.8	0.9	4.1	9.7
50	3.0	5.0	11.6	16.6	11.9	0.6	18.6	28.5	13.1	0.9	4.2	9.9
	4.0	7.1	16.5	16.7	11.8	0.6	18.6	30.2	13.3	0.9	4.2	10.1
	2.0	2.6	6.0	16.2	12.1	0.7	18.5	23.5	14.4	0.9	4.5	11.2
60	3.0	4.9	11.3	16.3	12.0	0.7	18.6	24.8	14.6	0.9	4.5	11.4
	4.0	7.0	16.2	16.5	12.0	0.6	18.7	26.2	14.8	0.9	4.6	11.6
	2.0	2.5	5.8	15.5	11.9	0.8	18.2	20.0	15.6	1.0	4.8	12.4
70	3.0	4.8	11.1	15.7	11.9	0.7	18.2	21.0	15.9	1.0	4.8	12.6
	4.0	6.9	16.0	15.9	11.9	0.7	18.3	22.1	16.1	1.0	4.9	12.8
	2.0	2.5	5.7	14.6	11.5	0.9	17.6	16.8	16.4	1.0	5.0	13.1
80	3.0	4.8	11.0	14.8	11.5	0.8	17.7	17.5	16.6	1.0	5.0	13.3
	4.0	6.9	15.9	15.0	11.5	0.8	17.7	18.4	16.9	1.0	5.1	13.6
	2.0	2.5	5.7	13.6	11.0	1.0	16.9	13.9	16.6	1.0	5.0	13.3
90	3.0	4.7	11.0	13.7	11.0	0.9	17.0	14.5	16.8	1.0	5.1	13.5
	4.0	6.8	16.0	13.9	10.9	0.9	17.0	15.1	17.0	1.0	5.1	13.7
	2.0	2.5	5.7	12.5	10.4	1.1	16.2	11.5				
100	3.0	4.7	10.8	12.6	10.4	1.1	16.3	12.0				
	4.0	6.8	15.7	12.8	10.4	1.0	16.3	12.5				
	2.0	2.4	5.6	11.5	9.9	1.2	15.6	9.6				
110	3.0	4.6	10.6	11.7	9.9	1.2	15.7	10.0				
	4.0	6.7	15.5	11.9	9.9	1.1	15.8	10.4				
	2.0	2.3	5.3	10.8	9.5	1.3	15.3	8.2				
120	3.0	4.5	10.3	11.0	9.5	1.3	15.4	8.5				
	4.0	6.6	15.2	11.2	9.5	1.3	15.5	8.9				

Notes:

- Interpolation is permissible; extrapolation is not.
- All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. All performance is based upon the lower voltage of dual voltage rated units.

- Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. Operation below 40°F (4.4°C) is based upon 20% methanol antifreeze solution.

 Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit.
- See performance correction tables for operating conditions other than those listed above.
- See Performance Data Selection Notes for operation in the shaded areas.
- Performance capacities shown in thousands of Btuh.
- For unit operation in the shaded area when LWT is below 40°F (4.4°C), use antifreeze and clip the JW3 jumper on the CXM2. This is due to the potential of the refrigerant temperature being as low as 32°F (0°C) with 40°F (4.4°C) LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. Never clip JW3 for standard range equipment or systems without antifreeze.

Cooling Corrections

Ent Air	Total Clg			Ser	ns Clg Cap	Multipliers	- Entering [OB F			Downer	Heat of
WB F	Capacity	60	65	70	75	80	80.6	85	90	95	Power	Rejection
50	0.61	0.80	1.03	*	*	*	*	*	*	*	1.00	0.76
55	0.72	0.64	0.87	1.06	*	*	*	*	*	*	1.00	0.83
60	0.84		0.70	0.89	1.09	*	*	*	*	*	1.00	0.90
65	0.96			0.71	0.91	1.06	1.12	1.29	*	*	1.00	0.98
66.2	0.99			0.67	0.86	1.02	1.08	1.24	*	*	1.00	0.99
67	1.00			0.64	0.83	1.00	1.05	1.21	1.4	*	1.00	1.00
70	1.07				0.72	0.87	0.93	1.09	1.28	1.48	1.00	1.05
75	1.19					0.68	0.74	0.90	1.07	1.27	1.00	1.12

- AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling 80.6°F (27°C) DB/ 66.2°F (19°C) WB, and Heating 68°F (20°C) DB/ 59°F (15°C) WB entering air temperature.

 Asterisks indicate that no correction factor is needed, Total Capacity equals Sensible capacity.
- Entering DB temperature range is based on operating limits, not on commissioning limits.
- Cooling and heating air corrections based on rated airflow.

Heating Corrections

Ent Air DB °F	Heating Capacity	Power	Heat of Extraction
45	1.05	0.78	1.13
50	1.05	0.82	1.12
55	1.04	0.86	1.10
60	1.03	0.91	1.07
65	1.02	0.96	1.03
68	1.01	0.99	1.01
70	1.00	1.00	1.00
75	0.98	1.06	0.95
80	0.95	1.11	0.90

[•] Heating air corrections based on rated airflow.

Airflow Correction Table

Airflow		Heating	l			Cooling		
% of Rated	Heating Capacity	Heating Power	Heat of Extraction	Total Capacity	Sensible Capacity	Sens/Total Ratio	Power	Heat of Rejection
62.50	0.84	1.12	0.89	0.87	0.76	0.88	1.00	0.94
68.75	0.88	1.10	0.91	0.90	0.80	0.90	1.00	0.96
75.00	0.91	1.08	0.93	0.93	0.84	0.91	1.00	0.97
81.25	0.93	1.05	0.95	0.96	0.88	0.93	1.00	0.98
87.50	0.96	1.03	0.97	0.99	0.92	0.95	1.00	0.98
93.75	0.98	1.01	0.98	1.01	0.96	0.97	1.00	0.99
100.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
106.25	1.02	0.98	1.02	1.06	1.04	1.01	1.00	1.01
112.50	1.03	0.96	1.03	1.08	1.08	1.03	1.00	1.02
118.75	1.05	0.95	1.05	1.10	1.12	1.05	1.00	1.02
125.00	1.06	0.93	1.06	1.12	1.15	1.07	1.00	1.03
131.25	1.07	0.92	1.07	1.14	1.19	1.09	1.00	1.03

[·] Cooling and heating air corrections based on rated airflow.

EWT				Cooling		Heatir	ng	WPD
(°F)	Antifreeze Type	Antifreeze %	Total Cap	Sensible Cap	Watts	Total Cap	Watts	WPD
	Water	0%	1.000	1.000	1.000	1.000	1.000	1.000
		5%	0.998	0.998	1.002	0.996	0.999	1.025
		10%	0.996	0.996	1.003	0.991	0.997	1.048
		15%	0.994	0.994	1.005	0.987	0.996	1.098
		20%	0.991	0.991	1.006	0.982	0.994	1.142
	Ethanol	25%	0.986	0.986	1.009	0.972	0.991	1.207
	EINGHOI	30%	0.981	0.981	1.012	0.962	0.988	1.265
		35%	0.977	0.977	1.015	0.953	0.985	1.312
		40%	0.972	0.972	1.018	0.943	0.982	1.370
		45%	0.966	0.966	1.023	0.931	0.978	1.431
		50%	0.959	0.959	1.027	0.918	0.974	1.494
		5%	0.998	0.998	1.002	0.996	0.999	1.021
		10%	0.996	0.996	1.003	0.991	0.997	1.040
		15%	0.994	0.994	1.004	0.987	0.996	1.079
		20%	0.991	0.991	1.005	0.982	0.995	1.114
	Ethylana Chuad	25%	0.988	0.988	1.008	0.976	0.993	1.146
	Ethylene Glycol	30%	0.985	0.985	1.010	0.969	0.990	1.175
		35%	0.982	0.982	1.012	0.963	0.988	1.208
		40%	0.979	0.979	1.014	0.956	0.986	1.243
		45%	0.976	0.976	1.016	0.950	0.984	1.278
90		50%	0.972	0.972	1.018	0.943	0.982	1.314
		5%	0.997	0.997	1.002	0.993	0.998	1.039
		10%	0.993	0.993	1.004	0.986	0.996	1.075
		15%	0.990	0.990	1.007	0.979	0.994	1.116
		20%	0.986	0.986	1.009	0.972	0.991	1.154
	Methanol	25%	0.982	0.982	1.012	0.964	0.989	1.189
	Welliand	30%	0.978	0.978	1.014	0.955	0.986	1.221
		35%	0.974	0.974	1.017	0.947	0.984	1.267
		40%	0.970	0.970	1.020	0.939	0.981	1.310
		45%	0.966	0.966	1.023	0.930	0.978	1.353
		50%	0.961	0.961	1.026	0.920	0.975	1.398
		5%	0.995	0.995	1.003	0.990	0.997	1.065
		10%	0.990	0.990	1.006	0.980	0.994	1.119
		15%	0.986	0.986	1.009	0.971	0.991	1.152
		20%	0.981	0.981	1.012	0.962	0.988	1.182
	Propylene Glycol	25%	0.978	0.978	1.014	0.956	0.986	1.227
	1 TOPYICHE GIYCUI	30%	0.975	0.975	1.016	0.950	0.984	1.267
		35%	0.972	0.972	1.018	0.944	0.982	1.312
		40%	0.969	0.969	1.020	0.938	0.980	1.356
		45%	0.965	0.965	1.023	0.929	0.977	1.402
		50%	0.960	0.960	1.026	0.919	0.974	1.450

Table continued on next page

Table continued from previous page

EWT				Cooling		Heatir	ng	Was
(°F)	Antifreeze Type	Antifreeze %	Total Cap	Sensible Cap	Watts	Total Cap	Watts	WPD
	Water	0%	1.000	1.000	1.000	1.000	1.000	1.000
		5%	0.991	0.991	1.006	0.981	0.994	1.140
		10%	0.981	0.981	1.012	0.961	0.988	1.242
		15%	0.973	0.973	1.018	0.944	0.983	1.295
		20%	0.964	0.964	1.024	0.927	0.977	1.343
	Ethanol	25%	0.959	0.959	1.028	0.917	0.974	1.363
	Lindioi	30%	0.954	0.954	1.031	0.907	0.970	1.383
		35%	0.949	0.949	1.035	0.897	0.967	1.468
		40%	0.944	0.944	1.038	0.887	0.964	1.523
		45%	0.940	0.940	1.041	0.880	0.962	1.580
		50%	0.936	0.936	1.043	0.872	0.959	1.639
		5%	0.997	0.997	1.002	0.993	0.998	1.040
		10%	0.993	0.993	1.004	0.986	0.996	1.075
		15%	0.990	0.990	1.006	0.980	0.994	1.122
		20%	0.987	0.987	1.008	0.973	0.992	1.163
	Ethylona Clysol	25%	0.983	0.983	1.011	0.966	0.990	1.195
	Ethylene Glycol	30%	0.979	0.979	1.013	0.958	0.987	1.225
		35%	0.976	0.976	1.016	0.951	0.985	1.279
		40%	0.972	0.972	1.018	0.943	0.982	1.324
		45%	0.969	0.969	1.021	0.937	0.980	1.371
30		50%	0.966	0.966	1.023	0.930	0.978	1.419
		5%	0.995	0.995	1.004	0.989	0.997	1.069
		10%	0.989	0.989	1.007	0.978	0.993	1.127
		15%	0.984	0.984	1.011	0.968	0.990	1.164
		20%	0.979	0.979	1.014	0.957	0.986	1.197
	Methanol	25%	0.975	0.975	1.017	0.949	0.984	1.216
	Memanor	30%	0.971	0.971	1.019	0.941	0.981	1.235
		35%	0.967	0.967	1.022	0.933	0.979	1.286
		40%	0.963	0.963	1.025	0.924	0.976	1.323
		45%	0.959	0.959	1.028	0.917	0.974	1.360
		50%	0.955	0.955	1.030	0.910	0.971	1.399
		5%	0.995	0.995	1.004	0.989	0.997	1.071
		10%	0.989	0.989	1.007	0.978	0.993	1.130
		15%	0.985	0.985	1.010	0.968	0.990	1.206
	Propylene Glycol	20%	0.980	0.980	1.013	0.958	0.987	1.270
		25%	0.974	0.974	1.017	0.947	0.983	1.359
	1 TOPYICHE GIYCUI	30%	0.968	0.968	1.021	0.935	0.979	1.433
		35%	0.963	0.963	1.025	0.924	0.976	1.522
		40%	0.957	0.957	1.029	0.913	0.972	1.614
		45%	0.949	0.949	1.034	0.898	0.967	1.712
		50%	0.941	0.941	1.039	0.882	0.962	1.816

Motorized Water Valve Corrections

Model	Max. Close-off Pressure (PSIG) [kPa]	Cv	GPM	Pressure Drop Adder (PSIG)	Heat (FT)														
			1.5	0.1	0.2														
SL06			1.9	0.1	0.3														
			2.3	0.2	0.5														
			1.7	0.1	0.3														
SL09			2.3	0.2	0.5														
	105 (0(0)	4.9	2.8	0.3	0.8														
	125 (862)	4.9	2.3	0.2	0.5														
SL12										3.0	0.4	0.9							
			2.8	0.3	0.8														
SL15			3.8	0.6	1.4														
			4.7	0.9	2.1														

Autoflow Valve

Model	2.5 GPM/Ton [0.142 LPS/Ton]	3 GPM/Ton [0.189 LPS/Ton]
SL06	1.5 [0.095]	1.5 [0.095]
SL09	2.0 [0.126]	2.5 [0.158]
SL12	2.5 [0.158]	3.0 [0.189]
SL15	3.0 [0.189]	4.0 [0.252]

Blower Performance SL06-09

Models: SL 06-15

	Rated	Max	Min	Speed				E	xternal St	atic Press	ure (in. w	g)		
Size	CFM	CFM	CFM	Тар	Unit	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
					RPM	1,070	1,129	1,188	1,251	1,314	1,343	1,372		
				,	Power (W)	24	25	27	28	30	31	31		
				1	CFM	230	216	202	188	174	164	153		
					Power/CFM	0.1	0.12	0.13	0.15	0.17	0.19	0.2		
					RPM 1,177 1,217 1,258 1,322 1,386 1,4	1,440	1,494	1,525	1,555					
					Power (W)	32	33	34	36	38	40	42	43	43
				2	CFM	268	258	247	233	220	208	197	188	179
61.07	0.50	075	1.50		Power/CFM	0.12	0.13	0.14	0.16	0.17	0.19	0.21	0.23	0.24
SL06	250	275	150		RPM					1,462	1,514	1,566	1,614	1,661
					Power (W)					48	50	52	54	56
				3	CFM					263	253	242	232	223
					Power/CFM					0.18	0.2	0.21	0.23	0.25
				4	RPM							1,628	1,683	1,737
					Power (W)							62	65	67
				4	CFM						275	266	257	
					Power/CFM							0.23	0.24	0.26
					RPM	1,168	1,199	1,230	1,284	1,339	1,420	1,502	1,534	1,566
				1	Power (W)	34	35	35	37	39	42	45	46	47
				'	CFM	300	290	279	265	251	235	219	212	206
					Power/CFM	0.11	0.12	0.13	0.14	0.16	0.18	0.21	0.22	0.23
					RPM	1,375	1,398	1,421	1,441	1,460	1,504	1,548	1,595	1,641
				2	Power (W)	55	56	57	58	59	62	64	66	68
				2	CFM	376	366	355	345	335	321	307	295	283
00.12	300	405	200		Power/CFM	0.15	0.15	0.16	0.17	0.18	0.19	0.21	0.22	0.24
SL09	300	425	200		RPM		1,553	1,573	1,596	1,618	1,643	1,667	1,707	1,745
				3	Power (W)		79	81	82	83	84	86	87	89
				3	CFM		422	412	403	394	386	378	363	348
					Power/CFM		0.19	0.2	0.2	0.21	0.22	0.23	0.24	0.26
					RPM						1,769	1,770	1,770	1,769
					Power (W)						104	101	97	92
				4	CFM						428	412	391	370
					Power/CFM						0.24	0.25	0.25	0.25

- Blower performance data is based on the lowest nameplate voltage setting.
- Blower performance is based on a wet coil with clean 1-inch filter. Blower performance is based on operating conditions of 80°F DB and 67°F WB. CFM Tolerance is $\pm 7\%$.

- Cells in grey option not available.

 The maximum allowable altitude of installation for this product is 6,561 ft (2,000 m).

Blower Performance SL12-15

Models: SL 06-15

	Rated	Max	Min	Speed				Е	xternal St	atic Press	ure (in. w	g)		
Size	CFM	CFM	CFM	Тар	Unit	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
					RPM	1,332	1,358	1,384	1,458	1,532	1,572	1,612		
				,	Power (W)	61	64	67	69	72	75	78		
				1	CFM	406	387	368	352	335	326	317		
					Power/CFM	0.15	0.17	0.18	0.2	0.21	0.23	0.24		
					RPM	1,340	1,378	1,416	1,458	1,500	1,547	1,594	1,647	1,698
				2	Power (W)	71	73	75	77	79	82	85	88	91
					CFM	451	432	413	393	374	354	333	323	313
01.10	400	500	000		Power/CFM	0.16	0.17	0.18	0.2	0.21	0.23	0.25	0.27	0.29
SL12	400	500	300		RPM		1,492	1,528	1,561	1,594	1,633	1,672	1,716	1,760
					Power (W)		96	98	100	102	104	107	110	113
			3	CFM		495	478	461	443	426	408	389	369	
					Power/CFM		0.19	0.21	0.22	0.23	0.25	0.26	0.28	0.31
				4	RPM					1,688	1,720	1,753	1,787	1,820
					Power (W)					127	129	131	133	134
				4	CFM					503	487	471	450	430
					Power/CFM					0.25	0.27	0.28	0.3	0.31
					RPM	1,388	1,419	1,451	1,476	1,501	1,534			
					Power (W)	75	77	79	80	81	83			
				1	CFM	450	432	413	397	380	363			
					Power/CFM	0.17	0.18	0.19	0.2	0.21	0.23			
					RPM	1,520	1,546	1,572	1,596	1,621	1,646			
					Power (W)	99	101	103	104	106	108			
				2	CFM	517	500	483	467	451	435			
01.15	500	575	0.7.5		Power/CFM	0.19	0.2	0.21	0.22	0.24	0.25			
SL15	500	575	375		RPM	1,619	1,644	1,668	1,694	1,719	1,739			
					Power (W)	125	127	129	130	132	133			
				3	CFM	567	555	543	528	512	495			
					Power/CFM	0.22	0.23	0.24	0.25	0.26	0.27			
					RPM		1,697	1,718	1,741	1,763	1,783			
					Power (W)		140	142	144	145	146			
				4	CFM		578	562	550	538	521			
					Power/CFM		0.24	0.25	0.26	0.27	0.28			

Blower performance data is based on the lowest nameplate voltage setting.

Blower performance is based on a wet coil with clean 1-inch filter.

Blower performance is based on operating conditions of 80°F DB and 67°F WB. CFM Tolerance is $\pm 7\%$.

Cells in grey - option not available.

The maximum allowable altitude of installation for this product is 6,561 ft (2,000 m).

Electrical Data

Standard Unit

Model	Voltage	Voltage	Voltage	Co	mpre	ssor	Fan Motor	Total	Min	Fuse/
Model	Code	vollage	Min/Max	QTY	RLA	LRA	FLA	Unit FLA	Circuit AMP	HACR AMP
SL006	G.J.	208/230-1-60	187/252	1	3.3	17.7	2.3	5.6	6.4	15
31006	E.D.	265-1-60	249/291	1	2.3	10.5	2.3	4.6	5.2	15
SL009	G.J.	208/230-1-60	187/252	1	4.5	22.2	2.3	6.8	7.9	15
31009	E.D.	265-1-60	249/291	1	3.3	13.5	2.3	5.6	6.4	15
SL012	G.J.	208/230-1-60	187/252	1	5.1	32.5	2.3	7.4	8.7	15
3LU12	E.D.	265-1-60	249/291	1	3.8	23.0	2.3	6.1	7.1	15
SL015	G.J.	208/230-1-60	187/252	1	6.6	29.0	2.3	8.9	10.6	15
	E.D.	265-1-60	249/291	1	4.8	20.0	2.3	7.1	8.3	15

Standard Unit with Internal Secondary Pump (ISP)

	Voltage	Voltage	Voltage Min/Max	Со	mpre	ssor	Electrical Options		Total	Min	Fuse/
Model	Code			QTY	RLA	LRA	Fan Motor FLA	Pump ISP FLA	Unit FLA	Circuit AMP	HACR AMP
SL006	G.J.	208/230-1-60	187/252	1	3.3	17.7	2.3	0.28	5.9	6.7	15
SL009	G.J.	208/230-1-60	187/252	1	4.5	22.2	2.3	0.28	7.1	8.2	15
SL012	G.J.	208/230-1-60	187/252	1	5.1	32.5	2.3	0.49	7.9	9.2	15
SL015	G.J.	208/230-1-60	187/252	1	6.6	29.0	2.3	0.49	9.4	11.0	15

Physical Data

Tranquility (SL) Series

Unit Size	06	09	12	15		
Number of refrigerant circuits	1	1	1	1		
Factory Charge R-454B - (oz.)	15	16	21	26		
Water Connection Size						
Source FPT		1/2"				
Water Volume (gallons) ¹	0.037	0.037 0.042 0.04				
Horizontal	,					
Filter Standard - 1" Throwaway	8.5 X 28 X 1					
Filter Standard - 2" Throwaway		8.5 X	28 X 2			
Weight - Operating (lbs.)	145	146	152	159		
Weight - Packaged (lbs.) ¹	185	186	192	199		

- All dimensions displayed above are in inches unless otherwise marked.
- All units have TXV and ½-inch and ¾-inch electrical knockouts.
- The standard Condensate Drain Connection is a rubber coupling that couples to %-inch schedule 40/80 PVC.
- The stainless steel condensate drain connection is 1/2-inch FPT.

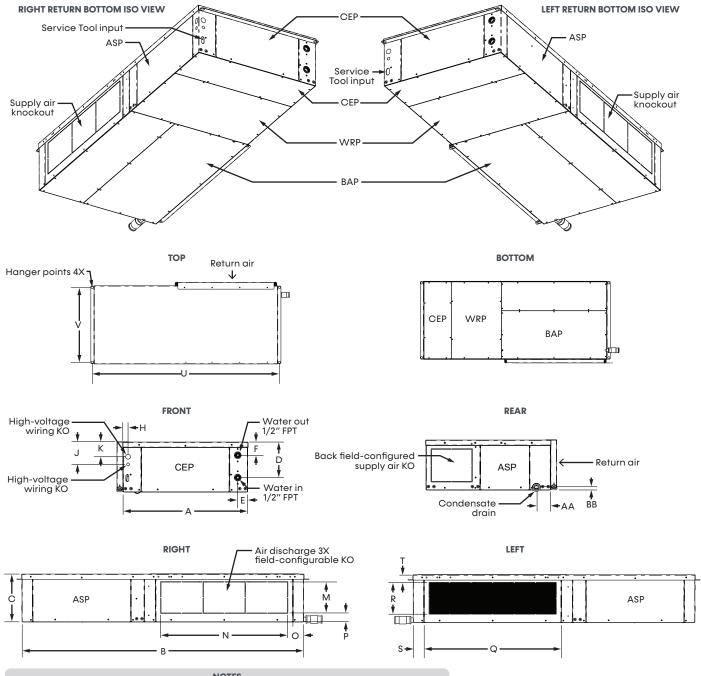
- PPT=Female Pipe Thread
 O = Optional, R = Required
 Packaged weight is based on a standard unit without water options with a single pallet.

Unit Maximum Water Working Pressure

Options	Max Pressure PSIG [kPa]
Base Unit	300 [2,068]
Internal Secondary Pump (ISP)	200 [1,379]
Internal Motorized Water Valve (MWV)	300 [2,068]
Internal Auto Flow Valve	300 [2,068]
20 Mesh Y Strainer Valve	300 [2,068]
Flow switch - Low Tier	145 [1,000]
Flow switch - High Tier	300 [2,068]

- Use the lowest maximum pressure rating when multiple options are combined.
- Optional hoses have a pressure rating of 400 PSIG [2,758 kPa]

Cabinet Dimensions and Water Connections


		Depth/ Length	Width	Height	Water Connections								
Model	Unit	A	В	C Water In		Water Out		Water In/Out	Condensate 1/2" MPT OR 3/4" PVC				
					D	Е	F	Е],	AA	ВВ		
SL006-015	in	22.5	53.0	9.0	6.4	1.8	2.4	1.8	1/2" FPT	2.5	0.5		
	cm	57.2	134.6	22.9	16.3	4.5	6.0	4.5	I/∠ FPI	6.5	1.2		

Water Connections, Hanger Dimensions, and Electrical Knockouts

		Connect	arge ion Duct nstalled			Return Connection Using Return Air Opening				Unit Hanger Detail		Electrical Knockouts		
Model	Unit	M	N	0	P	Q	R	S	T	U	V	Н	Low Voltage J KO 1/2"	High Voltage K KO 3/4"
01007.015	in	6.0	24.0	3.0	1.6	26.4	7.1	1.7	0.8	54.7	21.2	1.0	4.5	3.2
SL006-015	cm	15.2	61.0	7.6	4.0	67.0	17.9	4.4	2.1	139.0	53.7	2.5	11.5	8.0

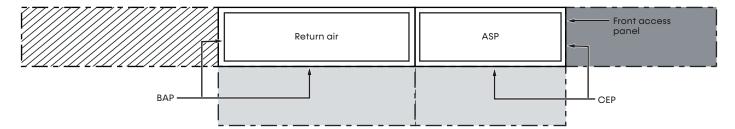
Corner Weights and Total Weight

		Total	Corner Weights							
Model	Unit	Weight	Left- Front	Right- Front	Left- Back	Right- Back				
SL006	lb	145	42.3	37	35	30.6				
31006	kg	66	19	17	16	14				
00012	lb	146	42.6	37.3	35.3	30.9				
SL009	kg	66	19	17	16	14				
SL12	lb	152	44.4	38.8	36.7	32.1				
SLIZ	kg	69	20	18	17	15				
SL15	lb	159	46.4	40.6	38.4	33.6				
3LI3	kg	72	21	18	17	15				

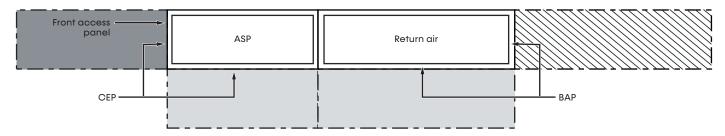
NOTES

- 1. While clear access to all removable panels is not required, installer should take care to comply with all building codes and allow adequate clearance for future field service.
- 2. Units shipped with filter frames with duct mounting collar for connection to return air duct connection.
- duct connection.

 Hanger brackets are designed into the top panel of the unit.

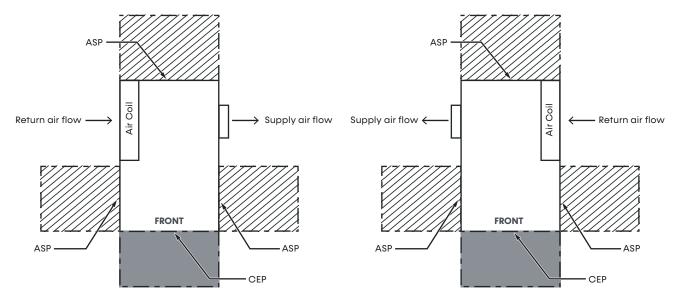

 Units are provided with a 1/2-inch MPT condensate connection. There is also a condensate connection kit provided in the unit which contains a flexible coupling that can be used to connect to 3/4-inch PVC or 1-inch Copper. 4.
- Blower service access can be from the bottom, side, or top.
 Bottom blower access allows blower assembly to be dropped, disconnected, and 6. removed for servicing.
- An installation kit that includes the hanger hardware and condensate coupling is attached the unit side access panel. Remove before installing.

 ASP are removable panels that provide additional access to the units interior. Clear 7.
- access to ASP panels is not required and they are not to be used in place of the mandatory CEP, WRP, or BAP panels.


LEGEND

- CEP = Controls and electrical service panel
- BAP = Blower, air coil, and drain service panel WRP = Water and refrigerant service panel
- ASP = Additional service panel (not required)8

CEILING HUNG - LEFT RETURN STRAIGHT DISCHARGE



CEILING HUNG - RIGHT RETURN STRAIGHT DISCHARGE

TOP VIEW - LEFT RETURN STRAIGHT DISCHARGE

TOP VIEW - RIGHT RETURN STRAIGHT DISCHARGE

NOTES

- While clear access to all removable panels is not required, the installer should take care to comply with all building codes and allow adequate clearance for future field service.
 CEP and BAP requires a 2-foot bottom service access. CEP requires a 2-foot front
- CEP and BAP requires a 2-foot bottom service access. CEP requires a 2-foot front service access as well. Ceiling-mounted service access doors are acceptable. BAP side service access is optional.
- 3. ASP are removable panels that provide additional access to the units interior. Clear access to ASP panels is not required and they are not in place of the mandatory CEP and BSP panels.

 The state of the panels and they are not in place of the mandatory CEP and BSP panels.
- 4. For back discharge configurations, supply air is delivered to the back of the unit (side opposite of the controls) and all blower service access is from the bottom. Not all sizes are available in back discharge only. Please see the Ductwork section for details.
- For back and straight combined discharge configurations, all blower service access panels are on the bottom.

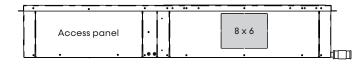
LEGEND

CEP = Controls and electrical service panel BAP = Blower, air coil, and drain service panel

BAP = Blower, air coil, and drain service par WRP = Water and refrigerant service panel

ASP = Additional service panel (not required)8

Mandatory 1-foot service access (front access service should be increased if external pumps, valves, etc. are applied)


Mandatory 1-foot service access

Optional 2-foot service access

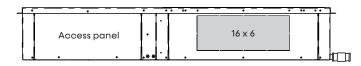
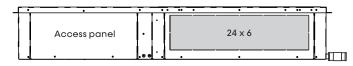
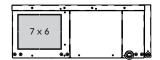

You can order Tranquility SLs with factory or field-configured supply air openings. If factory-configured supply air openings are desired, the configurations can be either left or right return air with right or left supply air. You can also choose back supply air as field or factory configured, but this configuration requires left or right supply air openings on sizes 12 and 15. Use the Supply Air Opening Dimensions, Supply Air Square Inches (in²), and Supply Air Options tables to determine minimum and maximum supply air openings by size.

Figure 1: Supply Air Openings


SIDE DISCHARGE SUPPLY AIR OPENING (SIZES 006-009)


SIDE DISCHARGE SUPPLY AIR OPENING (SIZES 006-015)

SIDE DISCHARGE SUPPLY AIR OPENING (SIZES 012-015)

BACK DISCHARGE SUPPLY AIR OPENING (SIZES 012-015)

Flanges for connection to the supply air are provided when factory-configured supply air openings are ordered. If you select field-configured supply air openings, supply air flanges are integrated into the cabinet design. Perforated supply air openings are knocked out and then the supply air flanges are bent back for connection to supply air plenum or duct work.

NOTE: Only SL sizes 006-009 can be applied as back discharge supply air. Sizes 012-015 must be applied as side discharge supply air with the option to be combined with back discharge supply air. You cannot field convert return air configurations.

Table 1: Supply Air Opening Dimensions

Size	Right/Left Supply Air Dimensions	Back Supply Air Dimensions
006-009	8 x 6 or 16 x 6	7 x 6
012-015	16 x 6 or 24 x 6	7 x 6

All dimensions are shown in inches

Table 2: Supply Air Square Inches (in²)

Size	Number of Openings	Minimum in ² Opening ¹		Recommended in ² Opening	
006-009	1 or 2	42	96	48	
012-015	1 or 2	90	186	144	

All dimensions are shown in inches

Less than minimum supply air opening area activates the unit's safeties

Table 3: Supply Air Options

Configuration	Number of Openings	Minimum in ² Opening ¹	Maximum in ² Opening
	8 x 6	X	
Straight	16 x 6	X	Χ¹
	24 x 6		X
	8 x 6 + 7 x 6	X	X1
Straight+Back	16 x 6 + 7 x 6		X
	24 x 6 + 7 x 6		X
Back	7 x 6	X	
Field Configured	-	X	X

 Sizes 012-015 this configuration experience internal static pressure losses up to 0.2. ClimateMaster recommends field wiring to motor speed tap four to use the highest fan motor CFM performance.

GENERAL

Furnish and install ClimateMaster Tranquility SL water-source heat pumps, as indicated on the plans. Equipment shall be completely assembled, piped, and internally wired. Capacities and characteristics as listed in the schedule and the specifications that follow.

Units shall be supplied completely factory built capable of operating over an entering water temperature range from 20° to 120°F (-6.7° to 43.3°C) as standard. Equivalent units from other manufacturers may be proposed provided approval to bid is given 10 days prior to bid closing. All equipment listed in this section must be rated and certified in accordance with Air-Conditioning, Heating and Refrigeration Institute / International Standards Organization (AHRI / ISO 13256-1) with a minimum EER of 14.0. All equipment must be tested, investigated, and determined to comply with the requirements of the standards for Heating and Cooling Equipment UL 60335-2-40 4th Edition, UL 60335-1 6th Edition for the United States and Can/ CSA C22.2 No. 60335-2-40:22, CAN/CSA C22.2 No 60335-1:16 for Canada, by Intertek Testing Laboratories (ETL). The units shall have AHRI/ISO and ETL-US-C labels.

All units shall pass a factory acceptance test. The quality control system shall automatically perform factory acceptance test via computer. A detailed report card from the factory acceptance test shall ship with each unit. NOTE: If unit fails the factory acceptance test, it shall not be allowed to ship. Unit serial number shall be recorded by factory acceptance test and furnished on report card for ease of unit warranty status.

BASIC CONSTRUCTION

Units shall have one of the following air flow arrangements: Left Inlet/Straight (Right) Discharge; Right Inlet/Straight (Left). Left Inlet/Back Discharge; Right Inlet/Back Discharge (limited to sizes 6 & 9 only). Left Inlet/Straight (Right) & Back Discharge; Right Inlet/Straight (Left) & Back Discharge as shown on the plans. Unit hanger brackets to be integrally designed into the top panel with rubber isolation grommets packaged separately.

If units with these arrangements are not used, the contractor is responsible for any extra costs incurred by other trades. All units must have a minimum of three access panels for serviceability of compressor compartment. Units having only one or two access panels to compressor/heat exchangers/expansion device/refrigerant piping or do not have bottom access panel shall not be acceptable.

All cabinets shall have supply air knockouts on side opposite of the return air and in the back. Field shall configure cabinets by removing factory knockouts and bending back integrally designed supply air duct flanges per model configuration shown on plans. For air noise attenuation purposes, there shall be a unit integrated sound attenuation box that helps reduce air flow noise transmission. Units not having supply air noise attenuation boxes are not acceptable.

The heat pumps shall be fabricated from heavy gauge galvanized steel. Compressor section interior surfaces shall be lined with ½-inch (12.7 mm) thick, 1½ lb/ft³ (24 kg/m³) acoustic type glass fiber insulation. The air handling section interior surfaces shall be lined with ½-inch (12.7 mm) thick, 1½ lb/ft³ (24 kg/m³) foil-faced fiber insulation for ease of cleaning. Insulation placement shall be designed in a manner that will eliminate any exposed edges to prevent the introduction of glass fibers into the air stream. **Units without foil-faced insulation in the air handling section will not be accepted**.

Standard insulation must meet NFPA Fire Hazard Classification requirements 25/50 per ASTM E84, UL 723, CAN/ULC S102-M88 and NFPA 90A requirements; air erosion and mold growth limits of UL-181; stringent fungal resistance test per ASTM-C1071 and ASTM G21; and shall meet zero level bacteria growth per ASTM G22. Unit insulation must meet these stringent requirements or unit(s) will not be accepted.

All units to have supply are knock outs with integrally designed 1-inch supply air duct collars, 1-inch (25.4 mm) bottom access filter frames with 1-inch (25.4 mm) filters factory installed. If units with these factory-installed provisions are not used, the contractor is responsible for any extra costs to field install these provisions, and/or the extra costs for their sub-contractor to install these provisions.

All units must have an insulated panel separating the fan compartment from the compressor compartment. Units with the compressor in the air stream are not acceptable. Units shall have factory installed 1-inch (25.4mm) wide filter frames for filter removal from the bottom. Units shall have a 1-inch (25.4mm) thick throwaway type glass fiber filter. The contractor shall purchase one spare set of filters and replace factory shipped filters on completion of startup. If units utilize non-standard filter sizes then the contractor shall provide 12 spare filters for each unit.

Cabinets shall have separate holes and knockouts for entrance of line voltage and low voltage control wiring. All factory-installed wiring passing through factory knockouts and openings shall be protected from sheet metal edges at openings by plastic ferrules. Supply and return water connections shall be copper FPT fittings. All water connections and electrical knockouts must be in the compressor compartment corner post as to not interfere with the serviceability of unit. Contractor shall be responsible for any extra costs involved in the installation of units that do not have this feature. Contractor must ensure that units can be easily removed for servicing and coordinate locations of electrical conduit and lights with the electrical contractor.

Option: Factory configured supply air openings.

Option: The unit will be supplied with optional factory installed 2-inch air filter frames

with filter access door and return air duct flanges (typically used for ducted return installation). A corresponding 2-inch throwaway type glass filter will ship with

the factory installed frame.

Option: UltraQuiet package shall consist of additional sound insulation applied to the

base pan, removable panels, and blower

housing.

Option: The unit shall be supplied with extended range insulation which adds closed-cell insulation to internal water lines and

insulation to internal water lines and provides insulation on suction side of refrigerant tubing including the refrigerant

to water braze plate heat exchanger.

FAN AND MOTOR ASSEMBLY

Fan and motor assembly shall be attached on a slide down fan deck assembly that can be access and removed from the bottom of the unit when it is installed. In service mode, the blower assembly shall hang below the unit resting on a service rail and be provided with quick electrical disconnecting means to facilitate easy field servicing and removal. The fan deck assembly shall be mechanically designed to prevent from dropping without first removing safety screw and then pulling back a safety release latch. The fan motor shall be multi-speed, permanently lubricated, ECM type, with internal thermal overload protection. Units supplied without permanently lubricated motors must provide external oilers for easy service. The fan motor shall include a torsionally flexible motor mounting system or saddle mount system with resilient rings to inhibit vibration induced high noise levels associated with "hard wire belly band" motor mounting. The airflow rating of the unit shall be based on a wet coil and a clean filter in place. Ratings based on a dry coil and/or no filter shall NOT be acceptable.

WATER AND REFRIGERANT CIRCUITS

All units shall contain an R-454B sealed refrigerant circuit including a high-efficiency rotary compressor designed for heat pump operation, a thermostatic expansion valve for refrigerant metering, an enhanced corrugated aluminum lanced fin and rifled copper tube refrigerant to air heat exchanger, reversing valve, brazed-plate refrigerant to water heat exchanger, and safety controls including a water flow switch, high-pressure switch, lowpressure (loss-of-charge) switch, water coil low temperature sensor, and air coil low temperature sensor. Access fittings shall be factory installed on high and low pressure refrigerant lines to facilitate field service. Activation of any safety device shall prevent compressor operation via a microprocessor lockout circuit. The lockout circuit shall be reset at the thermostat or at the contractor supplied disconnect switch. Units that cannot be reset at the thermostat shall not be acceptable.

Hermetic compressors shall be internally sprung. The compressor shall have a dual level vibration isolation system. The compressor will be mounted on specially engineered sound-tested EPDM vibration isolation grommets to heavy gauge compressor mounting rails, which are then isolated from the cabinet base with rubber grommets for maximized vibration attenuation. Compressor shall have thermal overload protection. Compressor shall be located in an insulated compartment away from air stream to minimize sound transmission. Refrigerant-to-air heat exchangers shall utilize enhanced corrugated lanced aluminum fins and rifled copper tube construction rated to withstand 625 PSIG (4309 kPa) refrigerant working pressure. Refrigerant to water heat exchangers shall be of copper inner plates stacked and brazed together allowing separate water and refrigerant flow pathways, rated to withstand 650 PSIG (4482 kPa) working refrigerant pressure and 300 PSIG (2,068 kPa) working water pressure.

Option: The unit will be supplied with internally factory mounted two-way motorized

water valve (MWV) for variable speed loop pumping requirements. Valve to be

normally closed type.

Option: The unit will be supplied with internally

factory mounted automatic water flow

(AFR) regulators.

Option: High pressure water flow switches for water

loop applications with designed pressures

between 161 to 300 PSI.

Option: The unit will be supplied with internally

mounted secondary pump for primary/ secondary applications, including single-

pipe systems.

Option: The refrigerant-to-air heat exchanger shall

be E-coated.

Option: The refrigerant-to-air heat exchanger shall

be tin-plated.

Refrigerant metering shall be accomplished by thermostatic expansion valve only. Expansion valves shall be dual port balanced type with external equalizer for optimum refrigerant metering. Units shall be designed and tested for operating ranges of entering water temperatures from 40° to 120°F (4.4° to 48.9°C). Reversing valve shall be four-way solenoid activated refrigerant valve, which shall default to heating mode should the solenoid fail to function. If the reversing valve solenoid defaults to cooling mode, an additional low temperature thermostat must be provided to prevent over-cooling an already cold room.

DRAIN PAN

The drain pan shall be constructed of 304 stainless steel. Drain pan shall be fully insulated. Drain outlet shall be located at pan as to allow unobstructed drainage of condensate. Drain outlet shall be connected from pan directly to a MPT connection or a coupling will be provided for connection to a non-threaded ¾-inch PVC or 1-inch copper coupling fitting. No hidden internal tubing extensions from pan outlet extending to unit casing (that can create drainage problems) will be accepted. Drain pan to be accessed and removed from the bottom of the unit. Units without bottom-removable drain pans shall not be accepted. The unit as standard will be supplied with solid-state electronic condensate overflow protection. Mechanical float switches will NOT be accepted.

ELECTRICAL

A control box shall be located within the unit compressor compartment and shall contain a 75VA transformer, 24V activated, 2-pole compressor contactor, terminal block for thermostat wiring and solid-state controller for complete unit operation. The entire control box shall be capable of rotating 120 degrees, allowing access to the electrical section from the front, bottom, or top (table top service requires unit top panel to be removed) of the unit. Units without front, bottom, and top access will not be accepted. Low voltage wires shall enter the box through a hole in the lower left side and high voltage wires shall enter the box through a hole in the upper left side. Reversing valve and fan motor wiring shall be routed through this electronic controller. Units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 Volt and provide heating or cooling as required by the remote thermostat or sensor.

ENHANCED SOLID STATE CONTROL SYSTEM (CXM2)

Units shall have a solid-state control system. Units utilizing electro-mechanical control shall not be acceptable. The control system microprocessor board shall be specifically designed to protect against building electrical system noise contamination, EMI, and RFI interference. The control system shall interface with a heat pump type thermostat. The control system shall have the following features:

- a. Anti-short cycle time delay on compressor operation.
- b. Random start on power-up mode.
- c. Low-voltage protection.
- d. High-voltage protection.
- e. Unit shutdown on high- or lowrefrigerant pressures.
- f. Unit shutdown on low water temperature.
- g. Condensate-overflow electronic protection.
- h. Option to reset unit at thermostat or disconnect.

- Automatic intelligent reset. Unit shall automatically reset the unit 5 minutes after trip if the fault has cleared. If a fault occurs three times sequentially without thermostat meeting temperature, then lockout requiring manual reset will occur.
- j. Ability to defeat time delays for servicing.
- k. The low-pressure switch shall not be monitored for the first 120 seconds after a compressor start command to prevent nuisance safety trips.
- 24V output to cycle a motorized water valve or other device with compressor contactor.
- m. Unit Performance Sentinel (UPS). The UPS warns when the heat pump is running inefficiently.
- n. Water coil low temperature sensing (selectable for water or anti-freeze).
- o. Air coil low temperature sensing.
- p. Minimized reversing-valve operation (Unit control logic shall only switch the reversing valve when cooling is demanded for the first time. The reversing valve shall be held in this position until the first call for heating, ensuring quiet operation and increased valve life.
- q. Emergency shutdown contacts.
- r. Entering and leaving water temperature sensing.
- s. Leaving air temperature sensing.
- t. Compressor discharge temperature sensing.
- Low water flow cut out switch ensures water flow through the braze plate heat exchanger protecting the equipment from low or no-flow scenarios.
- Automatic time-based reset for flow switch. If flow is reestablished within 60 seconds after flow being interrupted, the unit will restart the compressor after the 5 minutes anti short cycle.

NOTE: Units not providing the nine safety protections of anti-short cycle, low-voltage, high-voltage, high refrigerant pressure, low-pressure (loss-of-charge), air coil low temperature cut-out, water coil low temperature cut-out, water flow verification switch, and condensate overflow protection will not be accepted.

When CXM2 is connected to the AWC Thermostat via the myUplink Pro website/mobile app or the Wireless Service Tool directly at the unit, the installer/service technician can; check DIP switch S2 settings; run operation modes manually; check all physical inputs from thermostat and refrigerant pressure switches status, (Y1, Y2, W, O, G, H, ESD, NSB, OR, HP switch, and LOC switch); current or at time of fault the following temperatures - water coil (LT1), air coil (LT2), compressor discharge, leaving air, leaving water, entering water and control voltage; record last five faults, list possible reasons, and clear faults. When the AWC Thermostat is used this same functionality can be viewed and adjusted remotely in the web portal or mobile app. Systems not providing remote access, diagnosis, and adjustment functionality will not be accepted.

REMOTE SERVICE SENTINEL (CXM2)

Solid state control system shall communicate with thermostat to display (at the thermostat) the unit status, fault status, and specific fault condition, as well as retrieve previously stored fault that caused unit shutdown. The Remote Service Sentinel allows building maintenance personnel or service personnel to diagnose unit from the wall thermostat. The control board shall provide a signal to the thermostat fault light, indicating a lockout. The test button on the controller is pressed to display the specific code as indicated by a sequence of flashes. A detailed flashing code shall be provided at the thermostat LED to display unit status and specific fault status such as over/under voltage fault, high pressure fault, low pressure fault, low water temperature fault, condensate overflow fault, etc. Units that do not provide this remote service sentinel shall not be acceptable.

WARRANTY

ClimateMaster shall warranty equipment for a period of 12 months from startup or 18 months from shipping (whichever occurs first).

Option: Extended 4-year compressor warranty covers compressor for a total of 5 years.

Option: Extended 4-year refrigeration circuit warranty covers coils, reversing valve, expansion valve

and compressor for a total of 5 years.

Option: Extended 4-year control board warranty covers the factory-supplied control for a total

of 5 years.

Option: Extended 4-year control board warranty

covers the CXM2 control board for a total of

5 years.

FIELD-INSTALLED OPTIONS

Hose Kits

All units shall be connected with hoses. The hoses shall be braided stainless steel; fire-rated hoses complete with adapters. Only fire rated hoses will be accepted.

Valves

The following valves are available and will be shipped loose:

- a. Ball valve; bronze material, standard port full flow design, FPT connections.
- b. Ball valve with memory stop and PT port.
- "Y" strainer with blowdown valve; bronze material, FPT connections.
- d. Motorized water valve; slow acting, 24V, FPT connections.

Hose Kit Assemblies

The following assemblies ship with the valves already assembled to the hose described:

- Supply and return hoses having ball valve with PT port.
- b. Supply hose having ball valve with PT port; return hose having automatic flow regulator valve with PT ports, and ball valve.
- c. Supply hose having "Y" strainer with blowdown valve, and ball valve with PT port; return hose having automatic flow regulator with PT ports, and ball valve.
- d. Supply hose having "Y" strainer with blowdown valve, and ball valve with PT port; return hose having ball valve with PT port.

THERMOSTATS

The thermostat shall be a ClimateMaster mechanical or electronic type thermostat as selected below with the described features:

The thermostat shall be a ClimateMaster mechanical or electronic type thermostat as selected below with the described features:

a. iGate 2 Communicating (AWC) Thermostat (AWC99U01)

An electronic communicating web-enabled touchscreen thermostat shall be provided. The thermostat shall offer three stages of heating and two stages of cooling with precise temperature control and have a four-wire connection to the unit. The thermostat shall be capable of manual or automatic change-over operation and shall operate in standard or programmable mode. An integrated humidity control feature shall be included to control a humidifier and/or a dehumidifier. The thermostat shall include a utility demand reduction feature to be initiated by an independent time program or an external input. The thermostat shall provide access to via the web portal or mobile application to include temperature adjustment, schedule adjustment including occupied/unoccupied, entering-water temperature, leaving water temperature, water coil temperature, air coil temperature, leaving air temperature, and compressor discharge temperature. A graphical system layout to be provided with real-time operating mode information of the temperature sensors for easy diagnostics. The thermostat shall display system faults with probable cause and troubleshooting guidance. The system shall provide in clear language the last five faults, time of faults, operating temps at time of fault, and possible reasons for the fault. The thermostat shall provide access for immediate manual control of all outputs via the web portal/mobile application for rapid troubleshooting.

b. Single-Stage Digital Auto or Manual Changeover (ATA11U01)

The thermostat shall be a single-stage, digital, auto or manual changeover with HEAT-OFF-COOL-AUTO system switch and fan ON-AUTO switch. The thermostat shall have an LCD display with temperature and setpoint(s) in °F or °C. The thermostat shall provide permanent memory of setpoint(s) without batteries. A fault LED shall be provided to display specific fault condition. The thermostat shall provide temperature display offset for custom applications.

Multi-stage Manual Changeover Programmable 5/2 Day (ATP21W02)

The thermostat shall be 5-day/2-day programmable (with up to four setpoints per day), multi-stage (2H/1C), manual changeover with HEAT-OFF-COOL-EM HEAT system settings and fan ON-AUTO settings. The thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C. The thermostat shall provide permanent memory of setpoint(s) without batteries. The thermostat shall provide convenient override feature to temporarily change setpoint.

Multi-stage Automatic or Manual Changeover Programmable 7-Day (ATP32U03C)

The thermostat shall be 7-day programmable (with up to four setpoints per day), multi-stage (3H/2C), automatic or manual changeover with **HEAT-OFF-COOL-AUTO-EM HEAT system settings** and fan ON-AUTO settings. The thermostat shall have a blue backlit dot matrix LCD display with temperature, setpoints, mode, and status indication. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24-hour clock. Fault identification shall be provided to simplify troubleshooting by providing specific unit fault at the thermostat with red backlit LCD during unit lockout. The thermostat shall provide permanent memory of setpoints without batteries. The thermostat shall provide heating-setpoint range limit, cooling-setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. The thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. The thermostat shall provide an installer setup for configuring options and for setup of servicing contractor name and contact information. The thermostat shall allow the use of an accessory remote and/or outdoor-temperature sensor (AST008). Thermostat navigation shall be accomplished via five buttons (up/down/right/ left/select) with menu-driven selections for ease of use and programming.

Multi-stage Automatic or Manual Changeover Programmable 7-Day with Humidity Control (ATP32U04C)

The thermostat shall be 7-day programmable (with up to four setpoints per day), multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings. Separate dehumidification and humidification setpoints shall be configurable for discreet outputs to a dehumidification option and/or an external humidifier. Installer configuration mode shall allow the thermostat to operate with EC fan dehumidification mode via settings changes. The thermostat shall have a blue backlit dot matrix LCD display with temperature, relative

humidity, setpoints, mode, and status indication. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24-hour clock. Fault identification shall be provided to simplify troubleshooting by providing specific unit fault at the thermostat with red backlit LCD during unit lockout. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. The thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. The thermostat shall provide an installer setup for configuring options and for setup of servicing contractor name and contact information. The thermostat shall allow the use of an accessory remote and/or outdoor temperature sensor (AST008). Thermostat navigation shall be accomplished via five buttons (up/down/right/left/select) with menu-driven selections for ease of use and programming.

f. CM100 – Multi-stage Automatic or Manual Changeover digital thermostat (ATA32V01)

Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings. The thermostat shall have a green backlit LED display with temperature, setpoints, mode, and status indication via a green (cooling) or red(heating) LED. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24-hour clock. The thermostat shall provide permanent memory of setpoints without batteries. The thermostat shall provide heating-setpoint range limit, coolingsetpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. The thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. The thermostat shall provide an installer setup for configuring. Thermostat navigation shall be accomplished via four buttons (Mode/fan/down/up) with menudriven selections for ease of use and programming.

g. CM300 – Multi-stage, Automatic or Manual Changeover, 7-day Programmable with Wi-Fi and Humidity Control (AVB32V02C/R)

The residential version shall be 7-day programmable with up to four setpoints per day. The commercial version shall be 7-day programmable with four occupied/unoccupied periods per day with up to 4-hour override. Multistage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings, Wi-Fi, preoccupancy purge fan option, nighttime control of display backlight, bi-color LED indicates a heating or cooling demand, keypad lock, title 24 compliant, openADR2.0b certified with Skyport web portal. Compatible with condensate-overflow warning systems – lockout compressor with message on.

CM500 – Color-Touchscreen Display, Multistage, Automatic or Manual Changeover, 7-day Programmable with Wi-Fi and Humidity Control (AVB32V03C/R)

The thermostat shall have color-resistive touchscreen display with space temperature, relative humidity, setpoints, mode, status indication and local weather (if connected to Wi-Fi). Residential version shall be 7-day programmable with up to four setpoints per day. The commercial version shall be 7-day programmable with four occupied/ unoccupied periods per day with up to 4-hour override. Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings, Wi-Fi, pre-occupancy purge fan option, customizable screen saver and background displays, indicator-on display indicates a heating or cooling demand, setpoint lock, title 24 compliant, openADR2.0b certified with Skyport web portal. Compatible with condensate-overflow warning systems – lockout compressor with message on the display. Capable of being monitored by third-party software. Compatible with AST014 Wi-Fi remote sensor. Configurator mobile app or web portal for easy setup. Separate dehumidification and humidification setpoints shall be configurable for discreet outputs to a dehumidification option and/or an external humidifier. The temperature

indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24-hour clock. The thermostat shall provide permanent memory of setpoints without batteries. The thermostat shall provide heating setpoint-range limit, cooling setpoint-range limit, temperature display offset, dead-band range setting, and inter-stage differential settings. The thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. The thermostat shall provide access to a web portal and mobile app for installer setup for configuring options. The thermostat shall have menu-driven selections for ease-of-use and programming.

WIRELESS SERVICE TOOL

Allows installation and service personnel to access the configuration and service modes of the unit control.

- a. Configure the airflow, pump, or modulating valve operation etc.
- Diagnose by viewing fault history and operating conditions at the time of fault and manually operating the unit.

DDC SENSORS

ClimateMaster wall-mounted DDC sensor to monitor room temperature and interfaces with optional interface system described above. Several types as described below:

- a. Sensor only with no display (MPC).
- b. Sensor with setpoint adjustment and override (MPC only).
- Sensor with setpoint adjustment and override,
 LCD display, status/fault indication (MPC).

A NOTICE

This product specification document is furnished as a means to copy and paste ClimateMaster product information into project specification. It is not intended to be a complete list of product requirements. This document is an excerpt from the product submittal and must not be used without consulting the complete product submittal. For complete product installation and application requirements, please consult the complete product submittal. ClimateMaster is not responsible for misuse of this document or a failure to adequately review specific requirements in the product catalog.

Models: SL 06-15

Notes

Models: SL 06-15

Notes

Revision History

Date	Section	Description
10/03/25	All	Created

A NIBE GROUP MEMBER

7300 SW 44th St | Oklahoma City, OK 73179 Phone: 800-299-9747

www.climatemaster.com