HORIZONTAL & VERTICAL HS & VS Standard Temperature Range - HL & VL Extended Temperature Range Water Source Heat Pumps ## **ClimateMaster** 7300 S.W. 44th Street Oklahoma City, OK 73179 (405) 745-6000 Fax # (405) 745-6058 **02-CA100-9207-0 ClimateMaster** © 5/92 **ClimateMaster** Quality Heat Pumps Built For Life # Table of Contents ClimateMaster's state-of-the-art facility reflects the company's commitment to its customers, employees and products. More than quarter of a million square feet is home to the hundreds of dedicated employees who design, build and market ClimateMaster heat pumps for use around the world. This is the largest facility in the world dedicated to the manufacture of water source heat pump products. | ÷ | | | Contents | Page | |---|--|-------|--|-------| | | | I. | Introduction - Built For Life | 2-3 | | | > | II. | System Description - A Simply Efficient System | 4-5 | | | | III. | Applications | 6-7 | | | | IV. | Features & Benefits | 8-9 | | | | V. | Selection Procedure | 10-11 | | | | VI. | ARI Listings | 11 | | | 1. A. A.
2. A. A.
2. A. A.
3. A. A.
4. A. A. | VII. | Performance Data | | | 7 | | | Horizontal HS/HL and Vertical VS/VL | | | | Selection
Data | | Models 006 thru 120 | 12-25 | | | | | Blower Performance | 26-27 | | | | | Electrical Data | 28 | | | | VIII. | Physical Data | | | | | | Physical Characteristics | 29 | | | | | Dimensions | 30-40 | | | | IX. | Options and Accessories | 41-42 | | | | X. | Installation | 43 | | | | XI. | Wiring | 44-45 | | | | XII. | Controller Features | 46-47 | | | | XIII. | Specifications | 48-51 | | | | XIV. | Warranty | 52 | | | | XV. | Additional Products | 53 | ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. # Built For Life . . . When ClimateMaster says "Quality Heat Pumps Built for Life", we are acknowledging that it is not enough just to manufacture equipment that works. The ClimateMaster philosophy integrates superior standards in engineering and manufacturing with an awareness of the lifestyle integrity of the end user. ClimateMaster manufactures premium quality heating and cooling systems for the health and comfort of people. At ClimateMaster, we're building heat pumps for life...for the life of buildings and the lifestyle of the people who use them. For more than forty years, ClimateMaster has met air comfort needs by designing and building quality heat pump systems for a wide range of applications in many of the world's most prestigious buildings. Buildings like the Columbia Seafirst Center in Seattle, Ontario Place in Chicago, Tower City in Cleveland, and others around the world. To millions of people who use our equipment every day, the ClimateMaster name stands for quality and reliability. They know our heat pumps don't just heat and cool air, but actually provide an optimum air quality environment for people, whatever their activity. ClimateMaster is the world leader in the production of water source heat pumps, manufacturing a complete line of quality-constructed units for a variety of commercial, industrial, and residential applications. ClimateMaster offers more configurations than any other water source heat pump manufacturer. That is why ClimateMaster supplies more water source heat pumps for new construction and remodeling than anyone else. Since the early 1950's, ClimateMaster has been the world's leading innovator in water source heat pump technology, for both ground source and closed-loop systems. We have transformed a simple, common sense concept into one of the finest heating and cooling systems available anywhere. By focusing special attention to advanced product design, solid construction and installation flexibility, ClimateMaster systems are capable of satisfying even the most unique and demanding heating and cooling requirements. Today, ClimateMaster products are manufactured in a factory spanning over a quarter of a million square feet. Built in 1987, this state-of-theart facility incorporates technologically advanced manufacturing equipment with a factory design that encourages efficiency and quality. Employing over 100 quality control check points from start to finish, ClimateMaster builds heat pumps which meet the consistently high standards our customers have come to rely on. No matter what your construction needs - new or remodel - when you select ClimateMaster, you will enjoy the confidence that comes from knowing you have selected... **QUALITY HEAT PUMPS BUILT FOR LIFE!** # A Simply Efficient System 11. For the design of an ideal heating and cooling system that offers individual zone control, recovers and utilizes excess heat for space conditioning or alternative uses and serves multitenant needs simply and efficiently, the ClimateMaster water source heat pump system is the right choice. The closed-loop water source heat pump system is simple by design, and yet it is among the most efficient HVAC systems available today. The primary concept is to take advantage of the heating and cooling requirements of each space in the Legend C = Console Unit V = Vertical Unit VM = Vari-Master Unit VS = Vertical Stacked Unit LCU = Large Commercial Unit entire building by recovering otherwise wasted energy in some spaces and utilizing it where needed elsewhere in the system. The system is comprised of highly efficient packaged reverse cycle heat pump units interconnected by way of a water loop. Each unit satisfies the > air comfort requirements of the particular zone in which it is installed. When heat is required, the heat pump removes heat from the water loop via the unit's specially designed refrigerant-to-water coaxial heat exchanger and transfers it to the air in the space. When in the cooling mode, the unit removes heat from the air in the zone and transfers it back into the water loop through the coaxial heat exchanger. The circulation of water in the closed-loop moves heat energy from zone to zone for use where needed. Since zones have different cooling and heating requirements, the system balances energy use based on the entire system's needs. During certain times of the year, the constantly changing combination of units in the heating and cooling operating modes may actually balance the system so that no additional heat injection or rejection is required to maintain the water loop at satisfactory operating temperatures. **BALANCED ENERGY USE** PUMP ON HEAT SOURCE HEAT REJECTOR In very hot weather, when most of the system's individual units are operating in the cooling mode, more heat is extracted from the building and added to the water loop than is being utilized in other zones. This requires the rejection of heat from the system by way of a heat rejector ## **VERY HOT WEATHER** PUMP ON HEAT SOURCE HEAT REJECTOR (most often a cooling tower) which is attached to the loop. When the weather is very cold, most of the units are operating in the heating mode and the system requires more heat than is being placed in the loop by the other units. It then becomes necessary to add heat to the loop by way of a heat source (usually an energy efficient boiler). **VERY COLD WEATHER** Unlike other systems, at no time are the boiler and cooling towers operating simultaneously. Understandably, this total system operating concept is more efficient than other conventional systems. One of the most important reasons for selecting a quality heat pump system includes the ability to easily and effectively meter the energy usage of individual zones or rooms. Any combination of spaces, large and small, can enjoy efficient, individual heating and cooling control. The ability to monitor individual energy usage can be especially beneficial for any multi-tenant application such as office suites, shopping malls, condominiums, apartments and retirement facilities. As an added feature, the ClimateMaster water source heat pump system allows the option of installing only the units needed as the space is leased, staging the initial system installation expenses, and allowing increased flexibility regarding individual unit selection as the actual space configuration of the facility takes shape. Since ClimateMaster offers more unit configurations than any other water source heat pump manufacturer in the world, our heat pumps satisfy the widest range of applications, regardless of size, shape or use. This allows the recapture of energy from many different sources within buildings, such as lights, equipment, computers...even people. It is this total building energy utilization which distances closed loop water source heat pumps from other systems. # Applications ClimateMaster Horizontal and Vertical heat pumps are an excellent choice for a multitude of building applications ranging from office, school, health care and retirement facilities to hotel and motel, multifamily housing and industrial operations. This low-rise office building in Stamford, Connecticut, where floor space is valuable, is a typical above the ceiling application of horizontal water source heat pump units. ## **Horizontal Series** When an above-the-ceiling application best suits your needs, the ClimateMaster Horizontal unit is an excellent choice. The horizontal configuration of these ducted units make concealed, ceiling-mounted applications simple to install. Hanger and vibration isolator kits are provided with the horizontal unit. The ClimateMaster Horizontal
units come in a variety of return air configurations, resulting in superior installation versatility. Each unit has several removable panels, ensuring easy access and service. Installation flexibility and various air flow configuration options distinguish the ClimateMaster Horizontal unit as an ideal selection for office buildings, schools and dormitories, retirement centers and hotels. ## **Vertical Series** The ClimateMaster Vertical unit is most commonly utilized in condominiums, apartments and core areas of office buildings, but can be installed in any building area where a utility closet or room is available. The Vertical unit's configuration creates a significant space savings. In multi-unit residential applications such as apartments and condominums, the unit is usually set in a closet or utility room and can even be installed above the hot water heater for space savings. The air is distributed upward through duct work into the various rooms. The many return air options of the Vertical unit allow for ease of application in unusual closet configurations. These units can be installed where the room acts as a return air plenum and or can be equipped with return air ducts. The interior of the units are lined with an extra-heavy density thermal insulation to provide acoustical absorption and years of quiet operation. Tower City, in Cleveland, Ohio, is a Class A mixed use development which typifies vertical unit application. Many ClimateMaster configurations are also used to complete this efficient system. # Features and Benefits ## 1 Air Discharge Arrangements Factory Built/Field Convertible ClimateMaster offers a wide variety of end and side air discharge arrangements, factory-built to your specifications. If, for any reason, your configuration needs are changed or modified after the unit has arrived on the job site, the discharge patterns can be easily field-converted without any loss of blower performance. ## 2 Unit Refrigerant Circuit Protection The High Pressure Cut-out and Thermal Overload Cut-out will turn the compressor off when experiencing excessive entering water temperature or no water flow during the cooling cycle. The Low Temperature Cut-out guards against water freezing due to low entering water temperature or no water flow during the heating cycle. The Lock-out Relay will protect the unit from short-cycling if the previously mentioned safety controls turn the unit off. This may be re-set at the thermostat. ## 3 Compressor Springs to Ensure Quiet Operation Heavy-duty coil compressor springs on units larger than 1 ton ensure minimal compressor vibration, resulting in quiet operation, higher quality performance and a longer life of the unit. ## 4 Anchored Water Pipe Connections Secured, female-threaded, flush-mounted connections assure dependable water flow performance while reducing the possibility of internal damage caused by rough treatment on the job site and the negative effects of vibration on the fittings. ## 5 Easy Access To Compressor and Fan Motor Cabinet panels are easily removed, providing convenient access for maintenance or service. ## 6 Easy Fan Speed Selection with Quick Connect Terminal Fan motor speed can be quickly and easily changed to accommodate any last-minute installation changes, making air balancing a simple procedure. ## 7 Service Access Ports on High and Low Side of the Refrigerant Circuit Each unit incorporates easily accessible service access ports on both the suction and discharge refrigerant lines, allowing for easy monitoring of the refrigerant pressure. This allows for easy refrigerant recovery in the event service is needed. # 8 Convenient Access to All Piping and Electrical Connections All piping connections are flush-mounted and pipe-threaded for easy connection. Electrical connections are made simple with easy access knock-outs. ## 9 Dual Density Insulation for Thermal and Acoustical Control All external panels are lined with a special 1/2" (13mm) thick glass fiber dual density insulation. The optional sound attenuation package includes a heavy dampening material on the compressor, a discharge muffler (units 19,000 BTU (5008 watts) and larger) and 1/2" (13mm) insulation with a 5 lb/cu-ft density surrounding the compressor compartment. Special sound attenuation packages are available for installations requiring extreme sensitivity to sound. ## 10 Select from Electromechanical, Electronic or DDC Controls In addition to standard 24-volt controls with a terminal block, ClimateMaster offers as options the "CMC 2000" Series electronic controllers with advanced custom control technology. These controllers are specifically designed to enhance water source heat pump unit and system performance. Units can be provided with RS-485 communications capability for DDC control. This feature can be easily added in the field (See pages 46 & 47 for detailed information). ClimateMaster will also work with other DDC board manufacturers to factory-mount their controllers, if so desired. ## 11 Separate Fan/Compressor Compartments Individual fan and compressor compartments assist in preventing compressor heat from entering the system air flow while significantly reducing unwanted compressor noise. ## 12 Hanger & Vibration Isolator Kits Horizontal units come complete with hanger & vibration isolator kits, specially designed to eliminate unnecessary rigging in the field, thereby facilitating easier installation. The vibration isolators reduce noise during operations. ## 13 All Units are UL, ARI and CSA Listed Both contractor and owner can be confident that the ClimateMaster units installed will be reliable and perform as specified. For Optional Features and Accessories, See Pages 41-42. # Selection Procedure ESP - In. WG .10 .10 .10 .10 .10 .15 .15 .15 .20 .20 .25 .25 .30 **GPM** 2.5 3.2 3.8 5.3 6.0 7.5 9.4 10.7 12.4 16.2 18.3 24.8 32.4 Pressure Drop Ft. Ho 3.3 5.8 9.5 3.9 9.0 11.3 6.5 9.4 11.7 17.0 17.0 10.2 19.3 23.6 ## **Unit Model Number Designation** HS = Horizontal Standard Operating Range VS = Vertical Standard Operating Range HL = Horizontal Low Operating Range VL = Vertical Low Operating Range Standard Water Temperature Range 60°F - 95°F Low Water Temperature Range 40°F - 110°F ## Capacity Table Index | 1 0 | | | | |-------------------|---------|-------------------|---------| | HS/HL 006 | Page 12 | HS/HL & VS/VL 036 | Page 19 | | HS/HL & VS/VL 009 | Page 13 | HS/HL & VS/VL 042 | Page 20 | | HS/HL & VS/VL 012 | Page 14 | HS/HL & VS/VL 048 | Page 21 | | HS/HL & VS/VL 015 | Page 15 | HS/HL & VS/VL 060 | Page 22 | | HS/HL & VS/VL 019 | Page 16 | HS/HL 072 | Page 23 | | HS/HL & VS/VL 024 | Page 17 | HS/HL 096 | Page 24 | | HS/HL & VS/VL 018 | Page 18 | HS/HL 120 | Page 25 | | | | | | ### Glossary of Terms = Cubic Feet Per Minute = British Thermal Unit Per Hour **EER** = Energy Efficiency Rating T = Total S = Sensible LWT = Leaving Water Temperature **GPM** = Gallons Per Minute WB = Wet Bulb DB = Dry Bulb = Heat Absorption Rate **EWT** = Entering Water Temperature PD = Pressure Drop = Entering Air Temperature ## **Selection Procedure** - Step 1. Determine the actual heating and cooling loads for the space in question at the desired dry bulb and wet bulb conditions. - Obtain the following design parameters: Entering water temperature, water flow rate in GPM, air flow in CFM, external static pressure, water flow pressure drop and design wet and dry bulb temperatures. Air flow CFM should be between 300 and 525 CFM per ton. Unit water pressure drops should be kept as close as possible to each other to make water balancing easier. Go to the appropriate tables (pages 12-46) and find the proper indicated water flow and water - Select a unit based on total and sensible cooling at ARI conditions. Select a unit which is closest to, but no larger than, the actual load. - Enter tables (pages 12-46) at the design water flow and water temperature. Read the total and sensible cooling capacities. (Note interpolation is permissible, extrapolation is not). - Read the heating capacity. If it exceeds the design criteria it is acceptable. It is quite normal for water source heat pumps to be selected on cooling capacity only since the heating capacity is always greater than the cooling capacity. - Determine the correction factors associated with the variable factors of CFM, dry bulb and wet bulb. - Corrected Total Cooling = tabulated total cooling x wet bulb correction x CFM correction. - Corrected Sensible Cooling = tabulated sensible cooling x wet/dry bulb correction x CFM correction. - Compare the corrected capacities to the load requirements. Normally if the capacities are within 10% of the loads, the equipment is acceptable. It is better to undersize than oversize, as undersizing improves humidity control, reduces sound levels and extends the life of the equipment. - If the units selected are not within 10% of the load calculations, then review what affect changing the GPM, water temperature and/or air flow and air temperature would have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat the procedure. Remember, when in doubt, undersize slightly for best performance. Call 1-405-745-6000 and ask about how you can purchase a copy of our Design Point Data software program. This software package will assist you in selecting the correct ClimateMaster water source heat pump. You must have IBM or compatible computer with a minimum of 512K Ram and 5MB of hard drive space or two floppy disk drives to operate this program. ## **Selection Example** Ratings (a) ARI Conditions Model Number HS/HL-VS/VL 009 HS/HL-VS/VL 012 HS/HL-VS/VL 015 HS/HL-VS/VL 019 HS/HL-VS/VL 024 HS/HL-VS/VL 030 HS/HL-VS/VL 036 HS/HL-VS/VL 042 HS/HL-VS/VL 048 HS/HL-VS/VL 060 HS/HL 072 HS/HL 096 HS/HL 120 HS/HL 006 Nominal CFM 340 385 530 650 800 1000 1250 1500 1700 2000 2400 3400 Total BTUH 9800 12200 14100 20600 23400 29000 35000 41500 47500 62000 70000 95000
124000 The following is an example of an appropriate unit selection based upon the procedure described on page 10. Cooling (EAT=80/67, EWT=85) EER 11.8 11.6 11.2 10.5 12.0 12.2 11.7 11.0 11.2 11.0 11.2 11.0 11.0 11.2 Input Watts 630 845 1089 1343 1717 1918 2468 3188 3705 4320 5539 6363 8640 11076 LWT Deg. F. 95 95 95 95 95 95 95 95 95 95 95 95 95 95 Total BTUH 8800 12000 16200 18800 23600 30000 39000 42500 52500 57000 75000 91000 114000 150000 #### For Cooling: Assume we have determined that the appropriate cooling load at the desired dry bulb 80° and wet bulb 64° conditions is as follows: | Total Cooling | 21800 BTUH | |-------------------|-----------------------------| | Sensible Cooling | 16500 BTUH | | Entering Air Temp | 80° Dry Bulb / 64° Wet Bulb | Similarly, we have also obtained the following design parameters: Entering Water Temp GPM = 4.5 (Based upon a 12°F rise in temperature) CFM = 700 After making our preliminary selection (HS024), we enter the tables at design water flow and water temperature and read Total Cooling and Sensible Cooling capacities: | Total Cooling | 22300 BTUH | |------------------|------------| | Sensible Cooling | 17200 BTUH | Next, we determine our correction factors based upon the formulas introduced on page 10. Corrected Total Cooling = Heating (EAT=70, EWT=70) COP 4.0 4.2 4.0 4.0 3.9 4.5 4.3 3.9 4.0 3.8 3.8 3.9 3.8 3.8 Input Watts 645 827 1193 1377 1779 1957 2675 3199 3846 4403 5792 6836 8801 11582 $22300 \times .942 \times .991 = 20317$ *Corrected Sensible Cooling* = 17200 x 1.118 x .898 = 17268 Actual Temperature Rise = $\frac{\text{Correction of Heat of Rejection}}{\text{GPM x 500}} = \frac{28845 \text{ x .952}}{4.5 \text{ x 500}} = 12.2^{\circ}\text{F}$ When we compare the Corrected Total Cooling and Corrected Sensible Cooling figures with our load requirements stated in Step 1, we discover that our selection is well within +10% of our actual load requirement. Furthermore, we see that our Corrected Total Cooling figure is actually undersized as recommended, when compared to the actual indicated load. ## HS/HL Horizontal 006 Rated Air Flow 265 CFM Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) | | | Cool | ing Performance - | EAT 80/67°F (EE) | R = 11.8) | Heating Per | formance - EAT 70° | PF (COP = 4.0) | UNIT | |---------------------------------|-----------------------------|--------------------------------------|-------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|-------------------------------|---------------------------------|----------------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 1.0
1.4
1.9
2.4 | 40
40
40
40 | 9270
9560
9970
10090 | 6160
6250
6370
6410 | 10500
11200
11400
11484 | 480
470
450
440 | OPERATI | ON NOT RECON | AMENDED 570 | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 50
50
50
50 | 8670
8940
9220
9480 | 5960
6050
6140
6220 | 10300
11550
11780
12000 | 510
500
480
470 | 7040
7310
7670
7830 | 5000
5250
5415
5400 | 590
600
610
620 | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 60
60
60
60 | 7960
8300
8590
8750 | 5710
5830
5930
5980 | 9800
10080
10307
10440 | 560
540
520
510 | 7940
8240
8490
8660 | 5900
6160
6365
6480 | 620
630
640
650 | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 60
60
60
60 | 8450
8640
8720
8740 | 5550
5720
5830
5890 | 10300
10400
10450
10480 | 566
541
532
529 | 8230
8240
8310
8380 | 6090
6100
6115
6160 | 627
638
644
648 | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 70
70
70
70 | 7710
8260
8550
8650 | 5340
5490
5590
5640 | 9550
10010
10213
10284 | 611
578
559
551 | 8390
8590
8800
8940 | 6200
6370
6555
6600 | 634
640
645
648 | 1.1
1.9
3. 3
4.9 | | 1.0
1.4
1.9
2.4 | 85
85
85
85 | 6720
7060
74 00
7550 | 5140
5210
5280
5310 | 8750
9205
9453
9552 | 682
652
630
620 | 9320
9610
9750
9890 | 7050
7280
7410
7500 | 649
655
660
663 | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 90
90
90
90 | 6650
6780
7010
7170 | 5130
5160
5200
5230 | 8940
8995
9148
9276 | 699
675
655
645 | | | | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 95
95
95
95 | 6650
6700
6740
6860 | 5130
5140
5150
5170 | 8990
9012
9022
9036 | 712
695
679
668 | | | | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 100
100
100
100 | 5640
5920
6050
6210 | 4740
4870
4930
4990 | 8050
8260
8313
8436 | 740
720
700
690 | | | | 1.1
1.9
3.3
4.9 | | 1.0
1.4
1.9
2.4 | 110
110
110
110 | 5540
5620 | PERATION NO
4690
4730 | T RECOMMENT
7980
8040 | 750
740 | | | | 1.1
1.9
3.3
4.9 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors For Variations In Entering Air Temperature | | Cooling Co | rrections | | | * Sensibl | e equals Total | | Heating Correction | S | | | |--------------------------|---------------------------------|-----------|--------|--------|-----------|----------------|-----------------|--------------------|---------------------|------------------|----------------| | Entering
Air
°F WB | Total
Cooling
Capacity 70 | | | | | | Heat | Entering | TT | Heat | Power | | | | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB | Heating
Capacity | of
Absorption | Input
Watts | | 61 | 0.901 | 0.916 | 1.151 | 1.290 | * | * | 0.917 | 60 | 1.087 | 1.049 | 0.961 | | 64 | 0.950 | 0.763 | 1.007 | 1.147 | 1.388 | * | 0.960 | 65 | 1.045 | 1.022 | 0.980 | | 67 | 1.000 | 0.610 | 0.863 | 1.000 | 1.235 | * | 1.000 | 70 | 1.000 | 1.000 | 1.000 | | 70 | 1.054 | | 0.719 | 0.852 | 1.073 | 1.325 | 1.049 | 75 | 0.981 | 0.957 | 1.030 | | 73 | 1.108 | | | 0.706 | 0.930 | 1.168 | 1.090 | 80 | 0.940 | 0.920 | 1.064 | | | | | | | | For Variations in | Entering Air Flow | | | |---------------------------------|---|---|---|---|---|---|---|--|--| | | Cooling Correction | <u>S</u> | | Heating Corrections | | | | | | | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Inpnt
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | | | 165
200
265
290
320 | 0.947
0.968
1.000
1.008
1.014 | 0.890
0.949
1.000
1.021
1.040 | 0.979
0.991
1.000
1.014
1.035 | 0.981
0.990
1.000
1.009
1.020 | 0.940
0.967
1.000
1.008
1.015 | 0.950
0.980
1.000
1.009
1.018 | 1.019
1.010
1.000
0.995
0.989 | | | ## HS/HL Horizontal &VS/VL Vertical 009 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 340 CFM | | | Co | oling Performance - 1 | EAT 80/67°F (EE | R = 11.6) | Heating Per | rformance - EAT 70°I | F (COP = 4.2) | UNIT | |---------------------------------|-----------------------------|-------------------------------------|-------------------------------------|---|---------------------------------|---|-------------------------------------|----------------------------------|---------------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 1.2
1.8
2.5
3.0 | 40
40
40
40 | 12270
12540
12850
13050 | 8120
8280
8470
8590 | 14400
14580
14750
14850 | 650
630
610
590 | OPERATI
8050 | ION NOT RECOM | MENDED 780 | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 50
50
50
50 | 11720
11970
12260
12480 | 7780
7930
8110
8250 | 13920
14085
14313
14475 | 690
670
650
630 | 8670
9230
9760
10190 | 6060
6570
7075
7500 | 790
800
810
810 | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 60
60
60
60 | 11060
11410
11670
11830 | 7360
7590
7750
7850 | 13500
13770
13875
14070 | 740
710
690
680 | 10350
10920
11200
11330 | 10680
12735
14750
16125 | 820
830
830
830 | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 60
60
60 | 10730
10890
10950
11130 | 7680
7730
7640
7570 | 13320
13410
13475
13500 | 790
751
733
727 | 10770
11010
11170
11320 | 8400
8595
8725
8865 | 785
797
803
808 | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 70
70
70
70 | 9960
10660
10890
10920 | 7450
7730
7640
7570 | 12780
13320
13500
13560 | 844
796
771
762 | 11300
11710
12000
12120 | 8700
9090
9350
9450 |
807
819
82 7
830 | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 85
85
85
85 | 8610
9280
9800
9940 | 6970
7230
7400
7450 | 11700
12240
12500
12600 | 929
877
845
836 | 12420
12890
13050
13160 | 9780
10233
10313
10380 | 837
849
853
858 | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 90
90
90
90 | 8350
8840
9250
9440 | 6840
7070
7220
7280 | 11520
11835
12125
12300 | 969
918
889
876 | | | | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 95
95
95
95 | 8230
8480
8750
8960 | 6730
6910
7030
7110 | 11385
11400
11563
11700 | 1000
951
926
909 | | | | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 100
100
100
100 | 8770
9060
9200
9350 | 5920
6110
6200
6290 | 12000
12150
12125
12150 | 960
930
920
900 | | | | 1.7
3.5
5.8
8.6 | | 1.2
1.8
2.5
3.0 | 110
110
110
110 | 8610
8690 | PERATION NOT
5820
5870 | RECOMMEND
11750
11775 | 980
970 | | | | 1.7
3.5
5.8
8.6 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors For Variations In Entering Air Temperature | | Cooling C | orrections | | * Sensible equals Total | | | | | | | | |--------------------------|------------------------------|------------|---|-------------------------|--------|--------|-----------------|--------------|---------------------|------------|----------------| | Entering
Air
°F WB | Total
Cooling
Capacity | | Sensible Cooling Capacity Entering Dry Bulb | | | | | Entering | ** ** | Heat | Power | | | | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB | Heating
Capacity | Absorption | Input
Watts | | 61 | 0.880 | 0.689 | 0.973 | * | * | * | 0.913 | 60 | 1.027 | 1.024 | 0.939 | | 64 | 0.940 | 0.628 | 0.854 | 1.140 | * | * | 0.956 | 65 | 1.012 | 1.010 | 0.970 | | 67 | 1.000 | 0.566 | 0.735 | 1.000 | 1.158 | * | 1.000 | 70 | 1.000 | 1.000 | 1.000 | | 70 | 1.059 | | 0.616 | 0.859 | 1.016 | 1.289 | 1.044 | 75 | 0.993 | 0.987 | 1.038 | | 73 | 1.119 | | | 0.720 | 0.873 | 1.196 | 1.087 | 80 | 0.988 | 0.973 | 1.075 | For Variations In Entering Air Flow | | Cooling Correction | 1S | | | Heating Corrections | | | |-----|------------------------------|---------------------------------|-------------------------|-------------------------|---------------------|--------------------------|-------------------------| | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 235 | 0.957 | 0.959 | 0.953 | 0.923 | 0.961 | 0.965 | 1.053 | | 285 | 0.981 | 0.985 | 0.974 | 0.961 | 0.983 | 0.986 | 1.027 | | 340 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 360 | 1.006 | 1.006 | 1.009 | 1.007 | 1.005 | 1.007 | 0.990 | | 375 | 1.013 | 1.016 | 1.018 | 1.019 | 1.011 | 1.013 | 0.981 | | | | | | | | | | ## HS/HL Horizontal &VS/VL Vertical 012 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 385 CFM | | | Coolir | ng Performance - | EAT 80/67°F (EE) | R = 11.2) | Heating Per | formance - EAT 70° | F (COP = 4.0) | UNIT | |--------------------------|-----------------------------|---|-------------------------------------|---|--------------------------------------|--|---|--------------------------------------|---------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 1.8
2.5
3.2
4.0 | 40
40
40
40 | 15190
15520
15850
15980 | 9650
9860
10060
10150 | 18113
18375
18560
18640 | 890
860
830
810 | OPERATI | ON NOT RECOM | IMENDED | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 50
50
50
50 | 14680
14900
15210
15440 | 9340
9480
9670
9810 | 17763
17875
18080
18240 | 940
920
890
860 | 11460
12130
12890
13020 | 7963
8500
9200
9300 | 1040
1060
1090
1100 | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 60
60
60
60 | 13970
14340
14610
14760 | 8930
9140
9310
9830 | 17369
17563
17760
17800 | 1020
980
950
930 | 13450
14080
14420
14600 | 9704
10213
10528
10720 | 1110
1140
1150
1150 | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 60
60
60
60 | 13250
14050
14176
14270 | 8600
8992
9073
9053 | 16625
17330
17390
17542 | 1002
968
951
940 | 14170
14590
14800
15000 | 10413
10750
10912
11080 | 1121
1139
1148
1155 | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 70
70
70
70 | 12470
13140
13230
13250 | 8330
8540
8590
8610 | 15925
16300
16460
16480 | 1060
1025
1008
998 | 15160
15760
1 6200
16600 | 11288
11825
12208
12570 | 1160
1180
1 193
1204 | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 85
85
85
85 | 11620
11980
12200
12340 | 7630
7900
8030
8110 | 14875
15687
16000
16400 | 1158
1108
1 089
1079 | 16800
17540
18130
18550 | 12775
13562
14096
14480 | 1209
1228
1244
1257 | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 90
90
90
90 | 11540
11700
11870
11990 | 7500
7700
7820
7910 | 15540
15570
15600
15630 | 1193
1149
1129
1117 | | | | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 95
95
95
95 | 11460
11590
11620
11710 | 7430
7540
7640
7720 | 15375
15400
15460
15600 | 1217
1191
1170
1157 | | | | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 100
100
100
100 | 11530
11820
12000
12140 | 7580
7730
7830
7900 | 15837
16000
16112
16200 | 1300
1270
1250
1230 | | | | 3.3
6.2
9.5
14.0 | | 1.8
2.5
3.2
4.0 | 110
110
110
110 | 11370
11490 | RATION NOT
7500
7560 | 15680
15760 | 1320
1310 | | | | 3.3
6.2
9.5
14.0 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors For Variations In Entering Air Temperature | | Cooling C | orrections | | * Sensible equals Total | | | | | Heating Corrections | | | | |----|------------------|------------|----------------|---|--------|--------|-----------|--------------|---------------------|------------------|----------------|--| | | Total
Cooling | | Sensible Cooli | Sensible Cooling Capacity Entering Dry Bulb | | | | Entering | | Heat | Power | | | | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | Rejection | Air
°F DB | Heating
Capacity | of
Absorption | Input
Watts | | | 61 | 0.932 | 0.818 | 1.036 | 1.228 | * | * | 0.930 | 60 | 1.070 | 1.041 | 0.963 | | | 64 | 0.967 | 0.702 | 0.911 | 1.116 | 1.267 | * | 0.965 | 65 | 1.033 | 1.020 | 0.984 | | | 67 | 1.000 | 0.585 | 0.788 | 1.000 | 1.166 | 1.410 | 1.000 | 70 | 1.000 | 1.000 | 1.000 | | | 70 | 1.038 | | 0.660 | 0.887 | 1.066 | 1.310 | 1.030 | 75 | 0.975 | 0.976 | 1.030 | | | 73 | 1.080 | | | 0.771 | 0.966 | 1.194 | 1.067 | 80 | 0.960 | 0.960 | 1.056 | | | | Cooling Correction | S | | | Heating Corrections | | | |---------------------------------|---|---|---|---|---|---|---| | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 290
340
385
410
435 | 0.930
0.970
1.000
1.009
1.019 | 0.860
0.921
1.000
1.017
1.031 | 0.970
0.986
1.000
1.011
1.020 | 0.989
0.994
1.000
1.030
1.043 | 0.957
0.980
1.000
1.025
1.048 | 0.947
0.981
1.000
1.025
1.041 | 1.021
1.010
1.000
0.991
0.985 | ## HS/HL Horizontal &VS/VL Vertical 015 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 530 CFM | | | Cool | ing Performance - | EAT 80/67°F (EE | R = 10.5) | Heating Per | formance - EAT 70° | PF (COP = 4.0) | UNIT , | |--------------------------|-----------------------------|---|---|---|-------------------------------------|--|--|--------------------------------------|---------------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 2.0
2.8
3.8
5.0 | 40
40
40
40 | 16150
16310
16440
16490 | 11490
11570
11630
11660 | 19750
21440
22040
23300 |
1100
1070
1050
1040 | OPERATI | ON NOT RECON | AMENDED 1210 | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 50
50
50
50 | 15830
16010
16160
16260 | 11360
11430
11500
11540 | 20300
21020
21470
22800 | 1150
1120
1100
1080 | 13680
14350
15110
15230 | 9100
9520
10925
11625 | 1230
1260
1280
1280 | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 60
60
60
60 | 15250
15550
15760
15760 | 11130
11250
11330
11330 | 19670
19850
21090
22250 | 1230
1190
1160
1160 | 15660
16290
16620
16800 | 11090
11438
12502
13400 | 1300
1320
1330
1330 | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 60
60
60
60 | 15170
15220
15300
15665 | 11380
11230
11040
11400 | 18510
19120
19150
19575 | 1226
1162
1149
1151 | 16600
17480
17610
17830 | 11900
12040
12958
13850 | 1310
1348
1353
1362 | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 70
70
70
70 | 14590
15030
15220
15290 | 11280
11300
11340
11380 | 19050
19250
19310
19350 | 1310
1237
1220
1204 | 18040
18540
1 8800
19100 | 12900
13244
1449 7
15700 | 1352
1369
13 77
1385 | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 85
85
85
85 | 13320
13830
14100
14350 | 10520
10930
11150
11220 | 18110
18480
18610
18861 | 1426
1373
1343
1322 | 19690
20090
20330
20470 | 14600
15190
16739
18100 | 1417
1426
1430
1433 | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 90
90
90
90 | 13000
13390
13690
13910 | 10740
10880
10990
11070 | 18050
18070
18620
18633 | 1480
1431
1400
1378 | | | | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 95
95
95
95 | 12800
13040
13280
13470 | 10670
10750
10840
10910 | 17990
18060
18240
18320 | 1520
1474
1444
1423 | | | | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 100
100
100
100 | 12390
12770
12990
13190 | 10150
10280
10350
10420 | 18100
17920
19133
20250 | 1540
1500
1480
1460 | | | | 1.3
2.3
3.9
6.4 | | 2.0
2.8
3.8
5.0 | 110
110
110
110 | 12080
12260 | ERATION NOT
10050
10110 | RECOMMENI
18620
19700 | 1570
1560 | | | | 1.3
2.3
3.9
6.4 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors | | Cooling C | orrections | | | * Sensibl | le equals Tota | l | Heating Correction | S | | | |--------------------------|------------------------------|---|--------|--------|-----------|----------------|-----------------|--------------------|---------------------|------------------|----------------| | Entering
Air
°F WB | Total
Cooling
Capacity | Sensible Cooling Capacity Entering Dry Bulb | | | | | Heat | Entering | YY 41 | Heat | Power | | | | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB / | Heating
Capacity | or
Absorption | Input
Watts | | 61 | 0.890 | 0.826 | 1.028 | * | * | * | 0.895 | 60 | 1.008 | 1.035 | 0.965 | | 64 | 0.945 | 0.730 | 0.889 | 1.165 | * | * | 0.950 | 65 | 1.005 | 1.020 | 0.980 | | 67 | 1.000 | 0.631 | 0.751 | 1.000 | 1.139 | * | 1.000 | 70 | 1.000 | 1.000 | 1.000 | | 70 | 1.023 | | 0.612 | 0.835 | 1.012 | 1.230 | 1.027 | 75 | 0.988 | 0.978 | 1.030 | | 73 | 1.040 | | | 0.669 | 0.884 | 1.097 | 1.045 | 80 | 0.972 | 0.960 | 1.052 | | For Variations In E | Intering Air Flow | |---------------------|-------------------| |---------------------|-------------------| | | Cooling Correction | IS | | | Heating Corrections | | | |---------------------------------|---|---|---|---|---|---|---| | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 450
490
530
570
620 | 0.952
0.976
1.000
1.008
1.015 | 0.912
0.956
1.000
1.029
1.044 | 0.976
0.988
1.000
1.010
1.021 | 0.988
0.994
1.000
1.009
1.017 | 0.963
0.980
1.000
1.011
1.020 | 0.950
0.977
1.000
1.011
1.019 | 1.018
1.010
1.000
0.982
0.967 | ## HS/HL Horizontal &VS/VL Vertical 019 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 650 CFM | | | Cooli | ng Performance - | EAT 80/67°F (EE | R = 12.0) | Heating Per | formance - EAT 70° | PF (COP = 3.9) | UNIT | |---------------------------------|-----------------------------|---|---|---|--------------------------------------|---|---|-------------------------------------|----------------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 2.5
3.8
5.3
6.3 | 40
40
40
40 | 24020
24560
24840
25110 | 15910
16150
16270
16390 | 28500
28804
28938
29106 | 1330
1260
1220
1190 | OPERATI
17790 | ON NOT RECOM | MENDED 1530 | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 50
50
50
50 | 23560
23970
24330
24590 | 15700
15880
16040
16160 | 28250
28481
28673
28823 | 1390
1340
1290
1260 | 18560
19350
20280
20440 | 13438
14098
14893
15057 | 1560
1600
1640
1640 | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 60
60
60
60 | 22230
22970
23380
23420 | 15140
15450
15630
15640 | 27400
26695
26977
26980 | 1540
1450
1410
1400 | 20970
21750
22390
22410 | 15488
16150
16695
16711 | 1670
1700
1730
1730 | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 60
60
60 | 22200
22500
22300
22100 | 15900
16200
16100
16000 | 26363
26315
25970
25704 | 1574
1477
1434
1415 | 21300
21800
22200
22300 | 15650
16112
16483
16569 | 1716
1729
1737
1741 | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 70
70
70
70
70 | 21100
21400
22400
22500 | 15400
15500
16000
16100 | 25688
25897
26473
26491 | 1700
1670
1548
1528 | 22600
23200
23600
23800 | 16838
17366
17728
17908 | 1748
1768
1779
1784 | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 85
85
85
85 | 18700
19900
20600
20800 | 14500
14900
15200
15300 | 23875
24795
26500
26618 | 1851
1769
1 717
1703 | 24600
25300
25600
25800 | 18625
19247
19504
19688 | 1810
1833
1844
1850 | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 90
90
90
90 | 18000
19200
19700
20200 | 14300
14600
14800
15000 | 23313
24225
24632
25011 | 1921
1839
1810
1772 | | | | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 95
95
95
95
95 | 17500
18400
18800
19200 | 14200
14400
14500
14600 | 22937
23655
23930
24255 | 1953
1897
1865
1842 | | | | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 100
100
100
100 | 17940
18480
18790
18930 | 13390
13610
13730
13790 | 23375
23750
23956
24066 | 1960
1910
1880
1870 | | | | 1.7
5.0
9.0
12.2 | | 2.5
3.8
5.3
6.3 | 110
110
110
110 | OP
17390
17630 | ERATION NO
13180
13270 | T RECOMMENI
24274
24444 | 2010
1990 | | | | 1.7
5.0
9.0
12.2 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors For Variations In **Entering Air Temperature** | | Cooling C | orrections | | | * Sensib | le equals Tota | l | Heating Correction | ns | | | |-------------------------|----------------------------|-------------------------|---|-------------------------|---------------------|-----------------|-------------------------|--------------------|-------------------------|-------------------------|-------------------------| | Entering
Air
F WB | Total Cooling Capacity 70° | | Sensible Cooling Capacity Entering Dry Bulb | | | | | Entering | YY - /* | Heat | Power | | | | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | Rejection | Air
°F DB | Heating
Capacity | or
Absorption | Input
Watts | | 61
64
67 | 0.900
0.965
1.000 | 0.837
0.709
0.580 | 1.051
0.918
0.785 | 1.210
1.145
1.000 | *
1.262
1.135 | *
*
1.320 | 0.901
0.960
1.000 | 60
65
70 | 1.073
1.035
1.000 | 1.132
1.067
1.000 | 0.962
0.984
1.000 | | 70
73 | 1.030
1.050 | | 0.652 | 0.856
0.709 | 1.009
0.882 | 1.206
1.092 | 1.020
1.039 | 75
80 | 0.997
0.995 | 0.975
0.955 | 1.038
1.082 | | | | | | | | For Variations In | Entering Air Flow | |---------------------------------|---
---|---|---|---|---|---| | | Cooling Correction | S | | | Heating Corrections | | | | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 550
600
650
690
730 | 0.989
0.995
1.000
1.009
1.016 | 0.821
0.911
1.000
1.060
1.130 | 0.980
0.991
1.000
1.009
1.020 | 0.981
0.992
1.000
1.010
1.021 | 0.976
0.990
1.000
1.009
1.021 | 0.969
0.980
1.000
1.008
1.016 | 1.026
1.011
1.000
0.988
0.970 | ## HS/HL Horizontal &VS/VL Vertical 024 Rated Air Flow 800 CFM Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) | | | Co | ooling Performance - E | AT 80/67°F (EE | $\mathbf{R} = 12.2)$ | Heating Perf | ormance - EAT 70° | $^{\circ}$ F (COP = 4.5) | UNIT , | |---------------------------------|-----------------------------|---|---|---|-------------------------------------|--|---|--------------------------------------|-----------------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 3.0
4.5
6.0
7.5 | 40
40
40
40 | 28000
29000
29200
29300 | 20200
20400
20600
20700 | 32850
33650
33741
33820 | 1478
1390
1360
1334 | OPERATIO | ON NOT RECON | AMENDED 1613 | 3,4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 50
50
50
50 | 27700
27900
28100
28300 | 19700
20000
20200
20300 | 32950
33030
33065
33150 | 1600
1526
1463
1437 | 21200
22800
23800
24300 | 15600
17100
18000
18450 | 1674
1708
1741
1757 | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 60
60
60
60 | 27000
27500
27700
27800 | 18900
19400
19700
19800 | 32550
32850
32850
32887 | 1709
1658
1600
1584 | 25000
26400
27300
27800 | 19080
20340
21150
21563 | 1773
1816
1840
1863 | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 60
60
60
60 | 24800
25100
25800
26400 | 17600
17800
20700
21000 | 30300
30500
30750
31400 | 1664
1603
1564
1539 | 24900
26400
27300
27800 | 18540
19957
20820
21300 | 1896
1911
1921
1927 | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 70
70
70
70 | 24400
24900
25600
26100 | 17300
17800
18300
18500 | 30300
30532
30060
31600 | 1799
1728
1679
1652 | 28100
29300
3 0000
30500 | 21585
22725
23400
23887 | 1931
1947
195 7
1964 | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 85
85
85
85 | 22200
23100
23400
23900 | 17100
17400
17600
17700 | 28800
29475
30000
31330 | 2014
1937
1918
1856 | 31800
32400
32800
33000 | 25110
25650
26010
2 6 175 | 1985
1996
2003
2008 | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 90
90
90
90 | 21500
22300
22900
23200 | 16900
17200
17300
17400 | 28350
28845
29280
29475 | 2080
2005
1956
1926 | | | | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 95
95
95
95 | 20900
21600
22100
22400 | 16700
16900
17100
17200 | 28050
28535
28875
29100 | 2145
2074
2025
1998 | | | | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 100
100
100
100 | 20200
20800
21300
21600 | 16500
16700
16800
16900 | 27525
27900
30210
30375 | 2227
2155
2101
2073 | | | | 3.4
6.9
11.3
16.7 | | 3.0
4.5
6.0
7.5 | 110
110
110
110 | 20100
20300 | OPERATION NOT
16500
16500 | 27600
27750 | 2254
2222 | | | | 3.4
6.9
11.3
16.7 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors For Variations In Entering Air Temperature | | Cooling C | orrections | | | * Sensibl | le equals Total | | Heating Corrections | | | <u>-</u> | |--|---|-------------------------|--|---|--|------------------------------|---|--|---|---|--| | Entering | Total | | Sensible Cooling | g Capacity En | Capacity Entering Dry Bulb | | | Entering | *** | Heat | Power | | Air
°F WB | Cooling
Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB / | Heating
Capacity | of
Absorption | Input
Watts | | 61
64
67
70
73 | 0.905
0.942
1.000
1.019
1.038 | 0.790
0.674
0.558 | 1.035
0.887
0.740
0.648
0.556 | 1.200
1.118
1.000
0.838
0.620 | *
1.250
1.218
1.026
0.787 | *
1.312
1.209
1.066 | 0.889
0.952
1.000
1.028
1.043 | 60
65
70
75
80 | 1.015
1.008
1.000
0.993
0.985 | 1.051
1.025
1.000
0.974
0.949 | 0.950
0.975
1.000
1.025
1.050 | | | | | | | | | | | For V | ariations In Ent | ering Air Flow | | | Cooling C | orrections | | | | | | Heating Corrections | | | | | CFM | Total
Cooling
Capacity | | Sensible
Cooling
Capacity | | Heat
of
Rejection | I | ower
nput
Vatts | Heating
Capacity | | leat
of
orption | Power
Input
Watts | | 600
700
800
900
1000
1100 | 0.98
0.99
1.00
1.01
1.01 | 91
00
10
19 | 0.796
0.898
1.000
1.067
1.135
1.204 | | 0.977
0.989
1.000
1.012
1.023
1.033 | 0
1
1
1 | .976
.988
.000
.011
.023 | 0.972
0.986
1.000
1.012
1.023
1.030 | 0.:
1.:
1.:
1.: | 963
981
000
010
019
027 | 1.031
1.015
1.000
0.978
0.955
0.931 | ## HS/HL Horizontal &VS/VL Vertical 030 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 1000 CFM | | | Cooli | ng Performance - | EAT 80/67°F (EE) | R = 11.7) | Heating Per | formance - EAT 70° | F (COP = 4.3) | UNIT | |----------------------------------|-----------------------------|---|---|---|-------------------------------------|---|---|-------------------------------------|---------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 3.7
5.6
7.5
9.4 | 40
40
40
40 | 33600
34200
34500
34700 | 23700
23800
23800
23900 | 39960
40208
40125
40256 | 1917
1820
1721
1702 | OPERATI
24100 | ON NOT RECOM | IMENDED 1967 | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7.5
9.4 | 50
50
50
50 | 32700
33200
33500
33700 | 23400
23600
23700
23700 | 39479
39620
39806
39903 | 2061
1959
1924
1894 | 25700
27700
29200
29700 | 19240
21280
22500
23124 | 1981
2049
2083
2099 | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7.5
9.4 | 60
60
60
60 | 31600
32300
32700
33200 | 22900
23200
23400
23500 | 38850
39312
39488
39809 | 2202
2123
2058
2008 | 31100
33400
35100
36700 | 23532
25312
26437
27025 | 2154
2257
2292
2324 | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7.5
9.4 | 60
60
60
60 | 30600
30900
31200
31700 | 22950
23175
23400
23775 | 37650
37810
37960
38410 | 2160
2105
2032
1994 | 31200
33500
34800
35300 | 22866
24836
26025
26696 | 2360
2446
2497
2517 | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7.5
9.4 | 70
70
70
70 | 29600
29900
30100
30500 | 22200
22425
22575
21900 | 37740
37812
37875
37900 | 2391
2318
2270
2169 | 35400
37800
39000
39500 | 26622
28280
29250
29939 | 2522
2621
2675
2699 | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7 .5
9.4 | 85
85
85
85 | 26600
28300
29000
29400 | 20800
21400
21700
21800 | 35372
36680
37500
37600 | 2628
2526
2468
2433 | 41400
43300
44300
44700 | 30969
31920
32513
32806 | 2785
2879
2932
2954 | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7.5
9.4 | 90
90
90
90 | 25100
27000
27900
28400 | 20100
20900
21300
21500 | 34077
35896
36600
36989 | 2705
2608
2550
2519 | | | | 1.8
3.7
6.5
9.6 | | 3.7
5.6
7.5
9.4 |
95
95
95
95 | 23200
25500
26500
27000 | 19300
20300
20700
20900 | 32690
34664
35475
35861 | 2785
2688
2633
2605 | | | | 1.8
3.7
6.5
9.6 | | | 100
100
100
100 | 23900
24600
25400
25700 | 19500
20000
20400
20600 | 33948
34132
34688
34921 | 2938
2785
2715
2698 | | | | 1.8
3.7
6.5
9.6 | | | 110
110
110
110 | 23900
24000 | ERATION NO 19400
19600 | T RECOMMENT
34500
47000 | 2951
2894 | | | | 1.8
3.7
6.5
9.6 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors For Variations In Entering Air Temperature | | Cooling C | orrections | * Sensible equals Total | | | | | Heating Corrections | | | | | |--------------------------|---------------------|------------|-------------------------|-----------------|-----------------|----------------|-------------------------|---------------------|---------------------|------------------|----------------|--| | Entering
Air
°F WB | Total | | Sensible Coolin | ng Capacity Ent | tering Dry Bull |) | Heat
of
Rejection | Entering | ** .* | Heat | Power | | | | Cooling
Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 9 0° DB | | Air
°F DB | Heating
Capacity | of
Absorption | Input
Watts | | | 61 | 0.844 | 0.804 | 1.023 | 1.194 | * | * | 0.856 | 60 | 1.011 | 1.044 | 0.915 | | | 64 | 0.923 | 0.685 | 0.893 | 1.119 | 1.260 | * | 0.936 | 65 | 1.006 | 1.022 | 0.958 | | | 67 | 1.000 | 0.581 | 0.763 | 1.000 | 1.187 | 1.330 | 1.000 | 70 | 1.000 | 1.000 | 1.000 | | | 70 | 1.036 | | 0.633 | 0.860 | 1.059 | 1.248 | 1.026 | 75 | 0.987 | 0.972 | 1.039 | | | 73 | 1.071 | | 0.506 | 0.735 | 0.929 | 1.132 | 1.039 | 80 | 0.974 | 0.945 | 1.078 | | | For | Vari | atione | Ĭ'n | Entering | Air | Flow | |-----|------|---------|-----|----------|-----|------| | LOL | v an | lations | Ш | Purelina | AIL | riow | | | Cooling Correction | S | | | Heating Corrections | | | |------------------------------------|---|---|---|---|---|---|---| | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 750
875
1000
1125
1250 | 0.949
0.980
1.000
1.011
1.018 | 0.802
0.915
1.000
1.063
1.117 | 0.949
0.979
1.000
1.012
1.020 | 0.957
0.979
1.000
1.019
1.037 | 0.974
0.986
1.000
1.014
1.031 | 0.965
0.981
1.000
1.021
1.043 | 1.030
1.015
1.000
0.990
0.981 | ## HS/HL Horizontal &VS/VL Vertical 036 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 1250 CFM | | | Cool | ing Performance - | EAT 80/67°F (EE | R = 11.0) | Heating Per | formance - EAT 70° | °F (COP = 3.9) | UNIT | |----------------------------------|-----------------------------|---|---|---|-------------------------------------|---|--|-------------------------------------|---------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER PRESSURE DROP | | 4.5
6.6
9.4 | 40
40
40 | 41860
42418
42828 | 28600
29138
29503 | 50180
50460
50710 | 2512
2426
2366 | | ON NOT RECO | | 2.2
4.6
9.4 | | 12.0 | 40 | 43080 | 29820 | 50840 | 2313 | 27658 | 23280 | 3011 | 15.3 | | 4.5
6.6
9.4
12.0 | 50
50
50
50 | 40305
41177
41586
41838 | 28238
28893
29379
29571 | 50080
49995
49961
49920 | 2883
2779
2656
2567 | 28804
31282
33221
34085 | 23400
25080
28200
29520 | 2988
3072
3269
3302 | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 60
60
60
60 | 38916
40061
40593
41218 | 27634
28404
29007
29321 | 43763
49500
49632
49800 | 3079
2960
2837
2712 | 34856
37720
39933
42119 | 28620
29832
33135
34500 | 3176
3348
3587
4000 | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 60
60
60
60 | 39100
40500
41400
42000 | 29200
30200
30900
31300 | 47768
48411
48833
49200 | 2736
2513
2367
2292 | 33600
35700
37200
37900 | 27810
29271
32618
34080 | 2467
2623
2733
2794 | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 70
70
70
70 | 36900
38300
39300
39800 | 27500
28600
29300
29700 | 46710
47355
47846
48090 | 3055
2837
2696
2622 | 38700
41000
42500
43200 | 32378
33330
3 666 0
38220 | 2892
3072
3199
3268 | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 85
85
85
85 | 33600
34300
35000
36500 | 25100
26200
26900
27200 | 44300
45100
45600
47220 | 3534
3230
3182
3116 | 46400
48900
50400
51300 | 37665
37620
40749
41880 | 3524
3744
3898
3979 | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 90
90
90
90 | 32600
34000
34600
35400 | 24300
25400
26000
26400 | 44550
45210
45637
45900 | 3695
3487
3341
3281 | | | | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 95
95
95
95 | 31600
33000
33800
34300 | 23600
24600
25200
25600 | 44055
44748
45120
45378 | 3855
3650
3515
3446 | | | | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 100
100
100
100 | 39100
40500
41400
42000 | 29200
30200
30900
31300 | 51300
52338
52499
53160 | 3759
3663
3440
3463 | | | | 2.2
4.6
9.4
15.3 | | 4.5
6.6
9.4
12.0 | 110
110
110
110 | 29669
29796 | PERATION NO
24049
24455 | T RECOMMENI
43240
60000 | 3656
3642 | | | | 2.2
4.6
9.4
15.3 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## **Correction Factors** | | Cooling C | orrections | | | * Sensible | e equals Tota | | Heating Corrections | | 2 | | |-----------------|---------------------|-------------|---------------------------------|--------------|-------------------------|----------------|-----------------------|---------------------|---------------------|---------------------|-------------------------| | Entering
Air | Total
Cooling | | Sensible Coolin | g Capacity E | ntering Dry Bulb |) | Heat
of | Entering | Hastina | Heat | Power | | °F WB | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 9 0° DB | Rejection | Air
°F DB / | Heating
Capacity | of
Absorption | Input
Watts | | 61 | 0.910 | 0.763 | 1.030 | * | * | * | 0.895 | 60 | 1.025 | 1.047 | 0.965 | | 64 | 0.955 | 0.615 | 0.881 | 1.148 | * | * | 0.948 | 65 | 1.010 | 1.023 | 0.990 | | 67 | 1.000 | 0.466 | 0.733 | 1.000 | 1.267 | * | 1.002 | 70 | 0.995 | 1.000 | 1.015 | | 70 | 1.045 | | 0.585 | 0.852 | 1.118 | * | 1.055 | 75 | 0.980 | 0.977 | 1.040 | | 73 | 1.090 | | 0.436 | 0.703 | 0.970 | 1.139 | 1.109 | 80 | 0.965 | 0.953 | 1.065 | | | | | | | | | | | For V | ariations In Ent | ering Air Flow | | | Cooling C | Corrections | | | | | | Heating Correction | S | | _ | | CFM | Tot
Cool
Capa | ling | Sensible
Cooling
Capacity | | Heat
of
Rejection | j | ower
nput
Vatts | Heating
Capacity | | eat
of
rption | Power
Input
Watts | | 900 | 0.9 | | 0.955 | | 0.954 | | 0.931 | 0.961 | | 966 | 1.045 | | 1075 | 0.9 | | 0.978 | | 0.982 | | 0.957 | 0.980 | | 983 | 1.022 | | 1163 | 0.9 | | 0.989 | | 0.996 | |).978 | 0.990 | | 992 | 1.011 | | 1250 | 1.0 | | 1.000 | | 1.010 | | .000 | 1.000 | | 000 | 1.000 | | 1375 | 1.0 | | 1.016 | | 1.030 | | .031 | 1.014 | | 012 | 0.984 | | 1500 | 1.0 | 48 | 1.032 | | 1.050 | i | .062 | 1.028 | l. | 024 | 0.968 | ## HS/HL Horizontal &VS/VL Vertical 042 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 1500 CFM | | | Coolir | g Performance - 1 | EAT 80/67°F (EEI | R = 11.2) | Heating Per | formance - EAT 70° | F (COP = 4.0) | UNIT | | |------------------------------------|-----------------------------|---|---|---|-------------------------------------|---|---|-------------------------------------|----------------------------|--| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | | 5.2
7.6
10.7
13.8 | 40
40
40
40 | 48137
48943
49371
49689 | 30920
32030
32355
32780 | 58350
58410
58500
58610 | 3038
2820
2675
2637 | OPERATI
35260 | ON NOT RECON
22563 | AMENDED 3725 | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 50
50
50
50 | 47321
47512
47940
48257 | 31163
31761
32219
32506 | 57880
57920
58040
58150 | 3120
3063
2990
2921 | 36315
39599
42317
43454 |
23842
26790
28623
29601 | 3651
3753
4017
4061 | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 60
60
60
60 | 45960
46224
46795
47541 | 30497
31222
31811
32232 | 57160
57310
57559
57822 | 3310
3271
3219
3088 | 43946
47747
50867
53695 | 30784
33858
35899
36915 | 3856
4066
4385
4915 | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 60
60
60
60 | 45000
46600
47800
48300 | 32000
33100
34000
34300 | 55380
56126
56764
56925 | 3117
2867
2706
2616 | 42100
45200
47300
48400 | 32006
34390
36006
36777 | 2961
3163
3307
3394 | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 70
70
70
70 | 42500
44200
45200
45800 | 30200
31400
32100
32600 | 54080
54910
55372
55683 | 3483
3238
3080
2992 | 48600
51900
52500
55200 | 36790
39292
40821
41676 | 3467
3704
3872
3970 | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10. 7
13.8 | 85
85
85
85 | 38900
40500
41500
42100 | 27700
28800
29500
29900 | 52338
53124
53500
53820 | 4031
3794
3705
3557 | 58500
61900
64200
65400 | 44096
46512
48097
48921 | 4224
4517
4719
4837 | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 90
90
90
90 | 37600
39200
40200
40700 | 26700
27900
28600
28900 | 51558
52364
52858
53061 | 4213
3980
3829
3744 | | | | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 95
95
95
95 | 36400
38000
39000
39500 | 25900
27000
27700
28100 | 50960
51756
52269
52509 | 4396
4165
4016
3933 | | | | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 100
100
100
100 | 45000
46600
47800
48300 | 32000
33100
34000
34300 | 59150
60496
60776
61410 | 4267
4189
3921
3960 | | Attitus i gala
Ngjara | | 2.8
5.9
11.7
19.5 | | | 5.2
7.6
10.7
13.8 | 110
110
110
110 | OP
34202
34367 | 26373
26883 | **RECOMMENI
50290
54165 | 9ED
4171
41 6 8 | | | | 2.8
5.9
11.7
19.5 | | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## **Correction Factors** For Variations In Entering Air Temperature | | | | | | | | | | or + driderono | 111 23MOOT MAG 1111 | remperature | |--------------|---------------------|-------------|---------------------------------|---------------|-------------------------|---------------|-----------------------|---------------------|---------------------|----------------------|-------------------------| | | Cooling C | orrections | | | * Sensibl | e equals Tota | | Heating Corrections | | | | | Entering | Total | | Sensible Coolir | ng Capacity E | itering Dry Bull |) | Heat | Entering | TI. et e | Heat | Power | | Air
°F WB | Cooling
Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB | Heating
Capacity | ot
Absorption | Input
Watts | | 61 | 0.910 | 0.763 | 1,030 | * | * | * | 0.895 | 60 | 1.025 | 1.047 | 0.965 | | 64 | 0.955 | 0.615 | 188.0 | 1.148 | * | * | 0.948 | 65 | 1.010 | 1.023 | 0.990 | | 67 | 1.000 | 0.466 | 0.733 | 1.000 | 1.267 | * | 1.002 | 70 | 0.995 | 1.000 | 1.015 | | 70 | 1.045 | | 0.585 | 0.852 | 1.118 | * | 1.055 | 75 | 0.980 | 0.977 | 1.040 | | 73 | 1.090 | | 0.436 | 0.703 | 0.970 | 1.139 | 1.109 | 80 | 0.965 | 0.953 | 1.065 | | | | | | , | | | | | For V | ariations In Ent | ering Air Flow | | | Cooling C | Corrections | | | | | | Heating Corrections | | | | | CFM | Tot
Cool
Capa | ling | Sensible
Cooling
Capacity | | Heat
of
Rejection | j | ower
nput
Vatts | Heating
Capacity | | leat
of
rption | Power
Input
Watts | | 1000
1250 | 0.99
0.9 | 77 | 0.947
0.973 | | 0.943
0.977 | |),941
),971 | 0.953
0.977 | | 960
980 | 1.053
1.027 | | 1375 | 0.9 | 88 | 0.987 | | 0.993 | (|).984 | 0.988 | 0. | 990 | 1.013 | | 1500 | 1.00 | 00 | 1.000 | | 1.010 | | .000 | 1.000 | | 000 | 1.000 | | 1540 | 1.00 | 04 | 1.004 | | 1.015 | | .008 | 1.004 | | 003 | 0.996 | | 1580 | | 1.004 | | | 1.021 | | 017 | 1.007 | | 006 | 0.001 | ## HS/HL Horizontal &VS/VL Vertical 048 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 1700 CFM | | | Cooli | ig Performance - I | EAT 80/67°F (EE) | R = 11.0) | Heating Per | formance - EAT 70° | F (COP = 3.8) | UNIT | |------------------------------------|-----------------------------|---|---|---|-------------------------------------|---|----------------------------------|--------------------------------------|----------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 5.9
8.7
12.4
15.8 | 40
40
40
40 | 54930
55832
56509
56771 | 36689
37479
37948
38481 | 66970
67300
67400
67580 | 3528
3395
3223
3148 | OPERATI 37094 | ON NOT RECOM | MENIDED 4100 | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 50
50
50
50 | 53336
54199
54871
55135 | 36225
37164
37789
38159 | 66200
66800
67000
67100 | 3778
3717
3580
3518 | 38612
41902
44624
45713 | 24721
27579
29388
30336 | 4071
4192
4466
4510 | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 60
60
60
60 | 52508
52730
53560
54317 | 35451
36535
37311
37837 | 66375
66555
68820
74102 | 4206
4062
3844
3709 | 46725
50524
53640
56487 | 31890
34887
36890
37841 | 4343
4581
4914
5467 | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 60
60
60
60 | 51500
53500
54800
55400 | 37500
39000
39900
40400 | 64815
65490
66340
71100 | 3717
3408
3209
3107 | 45000
47900
49900
50900 | 33394
35583
37076
37762 | 3390
3608
3761
3845 | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 70
70
70
70 | 48600
50600
51800
52500 | 35400
36900
37800
38300 | 62835
64380
66960
71100 | 4150
3848
3653
3554 | 51800
55000
57000
58000 | 38291
40586
41974
42739 | 3970
4224
440 3
4498 | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12. 4
15.8 | 85
85
85
85 | 44200
46200
47500
48100 | 32200
33700
34600
35100 | 57525
59160
62620
66360 | 4798
4508
4320
4224 | 62200
65500
67700
68800 | 45696
47894
49414
50086 | 4840
5152
5364
5477 | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 90
90
90
90 | 42800
44800
46000
46600 | 31200
32700
33500
34000 | 56640
59203
60140
64780 | 5014
4728
4542
4447 | | | | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 95
95
95
95 | 41400
43300
44600
45200 | 30200
31600
32500
32900 | 56050
58028
60600
61620 | 5231
4948
4764
4670 | | | | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 100
100
100
100 | 39714
40160
41603
42047 | 31088
31495
32527
33168 | 59000
59725
60140
63990 | 5078
4965
4625
4681 | | | · | 3.9
8.4
17.0
27.6 | | 5.9
8.7
12.4
15.8 | 110
110
110
110 | OP
39147
39265 | 30933
31558 | RECOMMENT 58280 62015 | 4908
4913 | | | | 3.9
8.4
17.0
27.6 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors | | Cooling Co | orrections | | | * Sensibl | e equals Tota | l | Heating Corrections | | | | |--------------------------|------------------|------------|----------------|-----------------|-----------------|---------------|-----------------|---------------------|---------------------|---|----------------| | Entering
Air
°F WB | Total
Cooling | | Sensible Cooli | ng Capacity Ent | tering Dry Bult |) | Heat | Entering | | Heat | Power | | | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB / | Heating
Capacity | of
Absorption | Input
Watts | | 6I | 0.910 | 0.763 | 1.030 | * | * | * | 0.895 | 60 | 1.025 | 1.047 | 0.965 | | 64 | 0.955 | 0.615 | 0.881 | 1.148 | * | * | 0.948 | 65 | 1.010 | 1.023 | 0.990 | | 67 | 1.000 | 0.466 | 0.733 | 1.000 | 1.267 | * | 1.002 | 70 | 0.995 | 1.000 | 1.015 | | 70 | 1.045 | | 0.585 | 0.852 | 1.118 | * | 1.055 | 75 | 0.980 | 0.977 | 1.040 | | 73 | 1.090 | | 0.436 | 0.703 | 0.970 | 1.139 | 1.109 | 80 | 0.965 | 0.953 | 1.065 | | | | | | | | | | | For V | ariations In Ente | ring Air F | | | Cooling C | orrections | | | | | | Heating Corrections | | *************************************** | | | | Cooling Correction | IS | | | Heating Corrections | | | |--|--|--|--|--|--|--|--| | . CFM | Total
Cooling
Capacity |
Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 1400
1550
1625
1700
1915
2130 | 0.975
0.988
0.994
1.000
1.018
1.035 | 0.972
0.986
0.993
1.000
1.020
1.040 | 0.975
0.992
1.001
1.010
1.035
1.061 | 0.945
0.973
0.986
1.000
1.039
1.078 | 0.975
0.988
0.994
1.000
1.018
1.035 | 0.979
0.989
0.995
1.000
1.015
1.030 | 1.028
1.014
1.007
1.000
0.980
0.960 | ## HS/HL Horizontal &VS/VL Vertical 060 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 2000 CFM | | | Cool | ing Performance - H | EAT 80/67°F (EEI | R = 11.2) | Heating Per | formance - EAT 70° | PF (COP = 3.8) | UNIT | | |------------------------------------|-----------------------------|---|--|--|--------------------------------------|--|--|------------------------------|----------------------------|--| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | | 7.8
11.4
16.2
20.7 | 40
40
40
40 | 72263
72992
73759
74121 | 49347
50158
50775
51410 | 88250
88500
89100
93150 | 4687
4429
4115
4062 | OPERATI 48847 | ON NOT RECON | MMENDED 5395 | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 50
50
50
50 | 70301
70858
71921
72650 | 48723
49736
50562
50980 | 87250
87460
87600
88040 | 4968
4865
4615
4510 | 50841
55144
58730
60197 | 32565
36366
38637
39951 | 5356
5506
5881
5935 | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 60
60
60
60 | 68702
68937
69910
70917 | 47682
48893
49922
50550 | 86300
86600
86720
87120 | 5210
5174
4927
4748 | 61524
66491
70596
74385 | 42042
45942
48519
49784 | 5713
6016
6470
7194 | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 60
60
60
60 | 67300
69800
71500
72300 | 47338
49097
50293
50856 | 83499
84702
85536
85905 | 4747
4365
4114
3983 | 59200
63100
65700
67100 | 43992
46911
48762
49784 | 4466
4746
4948
5060 | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 70
70
70
70 | 63600
66100
67600
68500 | 45836
47638
48720
49368 | 81705
82878
83592
84042 | 5303
4930
4684
4555 | 68300
72400
7 5000
76500 | 50505
53409
55 323
56304 | 5230
5559
5792
5919 | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 85
85
85
85 | 58000
60400
62000
62800 | 43309
45100
46 295
46893 | 78897
80085
80 9 19
81351 | 6136
5776
55 39
5414 | 81900
86200
89100
90600 | 60216
63099
64962
66033 | 6378
6778
7057
7208 | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 90
90
90
90 | 56100
58500
60000
60900 | 42378
44191
45324
46004 | 78000
79173
79866
80316 | 6414
6058
5823
5700 | | | | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 95
95
95
95 | 54300
56700
58200
59000 | 41460
43324
44471
45082 | 77103
78318
78975
79384 | 6692
6341
6108
5987 | | | | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 100
100
100
100 | 52113
52503
54303
54897 | 40602
42150
43522
44312 | 74100
74100
72900
72450 | 6493
6373
5960
6030 | | | | 3.9
8.4
17.0
27.8 | | | 7.8
11.4
16.2
20.7 | 110
110
110
110 | 51097
51265 | PERATION NOT
41388
42161 | 72900
72450 | 6330
6336 | | | | 3.9
8.4
17.0
27.8 | | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors | | Cooling (| Corrections | | | * Sensib | le equals Tota | I | Heating Correction | ns | | | |-----------------|---------------------|-------------|---------------------------------|----------------|-------------------------|----------------|-----------------------|---------------------|---------------------|-----------------------|-------------------------| | Entering
Air | Total
Cooling | | Sensible Coolin | ng Capacity En | tering Dry Bull |) | Heat | Entering | YY # | Heat | Power | | °F WB | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB | Heating
Capacity | of
Absorption | Input
Watts | | 61 | 0.910 | 0.763 | 1.030 | 1.297 | * | * | 0.895 | 60 | 1.025 | 1.047 | 0,965 | | 64 | 0.955 | 0.615 | 0.881 | 1.148 | * | * | 0.948 | 65 | 1.010 | 1.023 | 0.990 | | 67 | 1.000 | 0.466 | 0.733 | 1.000 | 1.267 | * | 1.002 | 70 | 0.995 | 1.000 | 1.015 | | 70 | 1.045 | | 0.585 | 0.852 | 1.118 | * | 1.055 | 75 | 0.980 | 0.977 | 1.040 | | 73 | 1.090 | | 0.436 | 0.703 | 0.970 | 1.139 | 1.109 | 80 | 0.965 | 0.953 | 1.065 | | | | | | , | | | | | For V | ariations In Ent | ering Air Flo | | | Cooling (| Corrections | | | | | | Heating Correction | ns | | | | CFM | Tot
Cool
Capa | ing | Sensible
Cooling
Capacity | | Heat
of
Rejection | I | ower
nput
Vatts | Heating
Capacity | | leat
of
orption | Power
Input
Watts | | 1400 | 0.95 | | 0.952 | | 0.950 | (| .907 | 0.958 | 0. | 964 | 1.048 | | 1700 | 0.97 | | 0.976 | | 0.980 | (| 1.954 | 0.979 | 0. | 982 | 1.024 | | 1850 | 0.99 | | 0.988 | | 0.995 | (| .977 | 0.990 | · 0. | 991 | 1.012 | | 2000 | 1.00 | | 000.1 | | 1.000 | | .000 | 1.000 | 1. | 000 | 1.000 | | 2065 | 1.00 | | 1.005 | | 1.017 | 1 | .010 | 1.005 | 1. | 004 | 0.995 | | 2130 | 1.00 | 19 | 1.010 | | 1.023 | 1 | 020 | 1 009 | 1 | 008 | 0.000 | ## HS/HL Horizontal 072 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 2400 CFM | | | Cool | ing Performance - | EAT 80/67°F (EE | R = 11.0) | Heating Per | formance - EAT 70° | PF (COP = 3.9) | UNIT | |-------------------------------------|-----------------------------|--|--|---|------------------------------|---|---|------------------------------|-----------------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
WATER | | 9.9
14.4
18.3
23.4 | 40
40
40
40 | 83246
84322
85255
86475 | 54960
55537
56037
56691 | 99768
100247
100663
101206 | 4842
4667
4516
4317 | OPERATI 70910 | ON NOT RECON | MMENDED 6002 | 3.5
7.1
10.2 | | 9.9
14.4
18.3
23.4 | 50
50
50
50 | 79849
80925
81858
83078 | 53709
54286
54786
55440 | 97814
98294
98709
99252 | 5265
5090
4939
4740 | 71917
73835
75497
77671 | 50431
51017
52749
54250
56213 | 6126
6180
6227
6289 | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 60
60
60
60 | 76787
77528
78461
78500 | 52600
53035
53535
54400 | 96050
96340
96755
96181 | 5644
5513
5362
5182 | 77000
80596
82258
84000 | 55334
58530
60032
61549 | 6350
6467
6514
6580 | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 60
60
60
60 | 75251
75977
76892
76930 | 51548
51974
52464
53312 | 94129
94413
94820
94257 | 5531
5403
5255
5078 | 79310
83014
84726
86520 | 56994
60286
61833
63395 | 6541
6661
6709
6777 | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 70
70
70
70
70 | 73055
74131
74900
76284 | 51207
51784
51900
52938 | 93907
94050
94340
95344 | 6111
5836
5696
5586 | 85700
87357
91000
9 1193 | 62703
64312
67676
67776 | 6740
6754
6836
6863 | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18. 3
23.4 | 85
85
85
85 | 67400
69036
7 0000
71000 | 49500
49908
4 9975
51100 | 90458
91456
91712
92335 | 6758
6571
6363
6253 | 95581
97498
101000
101334 | 71253
72985
76297
76449 | 7130
7185
7240
7293 | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 90
90
90
90 | 66261
67337
69400
69490 | 48705
49282
49760
50436 | 90000
90479
91010
91437 | 6957
6782
6432
6332 | | | | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 95
95
95
95 | 63400
65639
66572
68531 | 48099
48657
49157
50100 | 87888
89502
89917
91460 | 7177
6994
6842
6720 | | | | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 100
100
100
100 | 62864
63940
64873
66093 | 47454
48031
48531
49185 | 88046
88525
88940
89483 | 7380
7205
7054
6855 | | | } | 3.5
7.1
10.2
14.3 | | 9.9
14.4
18.3
23.4 | 110
110
110
110 | OP
62696 | ERATION NOT | FRECOMMENI
87530 | 7278 | | | | 3.5
7.1
10.2
14.3 |
Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors | | Cooling C | orrections | | * Sensible equals Total Heating Corrections | | | | | | | | |-------|------------------|------------|----------------|---|-----------------|--------|-----------------|----------------|----------|------------------|----------------| | °F WB | Total
Cooling | | Sensible Cooli | ng Capacity En | tering Dry Bulb | | Heat | Entering | Heating | Heat | Power | | | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | ot
Rejection | Air
°F DB ′ | Capacity | of
Absorption | Input
Watts | | 61 | 0.910 | 0.871 | 1.072 | 1.243 | * | * | 0.956 | 60 | 1.035 | 1.052 | 0.948 | | 64 | 0.955 | 0.702 | 0.919 | 1.136 | * | * | 0.978 | 65 | 1.018 | 1.026 | 0.974 | | 67 | 1.000 | 0.532 | 0.766 | 1.000 | 1.221 | * | 1.000 | 70 | 1.000 | 1.000 | 1.000 | | 70 | 1.045 | | 0.611 | 0.864 | 1.101 | 1.334 | 1.021 | 75 | 0.984 | 0.982 | 1.030 | | 73 | 1.090 | | 0.455 | 0.727 | 0.981 | 1.234 | 1.043 | 80 | 0.969 | 0.965 | 1.061 | | | Cooling Correction | 18 | | | Heating Corrections | | | |------|------------------------------|---------------------------------|-------------------------|-------------------------|----------------------------|--------------------------|-------------------------| | CFM | Total
Cooling
Capacity | Sensible
Cooling
Capacity | Heat
of
Rejection | Power
Input
Watts | Heating
Capacity | Heat
of
Absorption | Power
Input
Watts | | 1800 | 0.936 | 0.940 | 0.948 | 0.978 | 0.935 | 0.928 | 1.022 | | 2100 | 0.968 | 0.970 | 0.974 | 0.991 | 0.967 | 0.963 | 1.011 | | 2250 | 0.984 | 0.985 | 0.987 | 0.998 | 0.984 | 0.982 | 1.006 | | 2400 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 2700 | 1.033 | 1.030 | 1.026 | 1.018 | 1.034 | 1.038 | 0.989 | | 3000 | 1.065 | 1.060 | 1.050 | 1.032 | 1.070 | 1.077 | 0.979 | ## HS/HL Horizontal 096 Shaded areas represent HL/VL units only. HS - Water temperature range (60°F - 95°F) HL - Water temperature range (40°F - 110°F) Rated Air Flow 3400 CFM | | | Cooli | ng Performance - | EAT 80/67°F (EE | R = 11.0) | Heating Per | formance - EAT 70° | PF (COP = 3.8) | UNIT | |-------------------------------------|---------------------------------|--|---|---|-------------------------------------|--|--|-------------------------------------|----------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 11.9
17.4
24.8
31.7 | 40
40
40
40 | 111168
111905
113017
113660 | 73721
75070
75897
76962 | 134700
134900
153100
135380 | 6890
6760
6477
6366 | OPERATI
74133 | ON NOT RECON | AMENDED 8184 | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 50
50
50
50 | 107164
108633
109741
110385 | 72788
74439
75578
76318 | 133750
134190
134240
134390 | 7790
7590
7180
7034 | 77286
83804
89182
91359 | 49504
55245
58652
60706 | 8144
8366
8931
9001 | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 60
60
60
60 | 105492
105688
107121
108747 | 71232
73178
74621
75674 | 133150
133290
133400
134050 | 8110
8089
7719
7416 | 93525
101048
107202
112891 | 63903
69861
73656
75605 | 8687
9141
9826
10910 | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 60
60
60
60 | 103200
107200
109700
111000 | 75200
78100
80000
80900 | 128520
130413
131564
132189 | 7418
6817
6419
6213 | 90000
95900
99800
101800 | 66878
71340
74152
75605 | 6787
7211
7519
7688 | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 70
70
70
70 | 97500
101400
103900
105200 | 71100
73900
75700
76700 | 125723
127629
127968
128702 | 8284
7697
7308
7106 | 103800
109900
114 000
116200 | 76696
81084
83 948
85432 | 7950
8447
8801
8993 | 4.4
9.5
19.3
31.5 | | 11,9
17.4
24.8
31.7 | 85
85
85
85 | 88800
92600
9 5000
96300 | 64700
67500
69200
70200 | 120368
122235
123876
124581 | 9583
9015
8640
8444 | 124500
131000
135300
137500 | 91511
95874
98704
100172 | 9692
10298
10724
10952 | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 90
90
90
90 | 85900
89700
92100
93400 | 62600
65400
67100
68100 | 119446
121365
122760
123472 | 10016
9455
9084
8891 | | | | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 95
95
95
95 | 83000
86800
89200
90500 | 60500
63300
65000
66000 | 118583
120495
121644
122362 | 10448
9895
9528
9337 | | | | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 105
105
105
105 | 77200
80900
83400
84600 | 56300
59000
60800
61700 | 115787
117624
118916
119509 | 11314
10774
10417
10230 | | | | 4.4
9.5
19.3
31.5 | | 11.9
17.4
24.8
31.7 | 110
110
110
110
110 | 78293
78612 | ERAPION NOT
61865
63116 | 100192
99696 | 6419
6213 | | | | 4.4
9.5
19.3
31.5 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors | For V | /ariations | In Er | itering | Air | Tem | peratur | |-------|------------|-------|---------|-----|-----|---------| |-------|------------|-------|---------|-----|-----|---------| | O 011 ' | O VI O | 11 1 00 | 7010 | | | | | | or variations | III Entering At | i remperature | |----------------------|----------------------|----------------|---------------------------------|---------------|-------------------------|----------------|-------------------------|-------------------------|---------------------|-------------------------|-------------------------| | | Cooling C | orrections | | | * Sensib | le equals Tota | 1 | Heating Corrections | | | | | Entering
Air | Total
Cooling | | Sensible Coolin | g Capacity Er | itering Dry Bull |) | Heat | Entering | TTC | Heat | Power | | °F WB | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | of
Rejection | Air
°F DB | Heating
Capacity | of
Absorption | Input
Watts | | 61
64 | 0.910
0.955 | 0.763
0.615 | 1.030
0.881 | *
1.148 | * | * | 0.895
0.948 | 60
65 | 1.025
1.010 | 1.047
1.023 | 0.965
0.990 | | 67
70 | 1.000
1.045 | 0.466 | 0.733
0.585 | 1.000 | 1.267
1.118 | * | 1.002
1.055 | 70
75 | 0.995
0.980 | 1.023
1.000
0.977 | 1.015
1.040 | | 73 | 1.090 | | 0.436 | 0.703 | 0.970 | 1.139 | 1.109 | 80 | 0.965 | 0.953 | 1.065 | | | | | | | | | | | For V | ariations In Ent | ering Air Flow | | | Cooling C | Corrections | | | | | | Heating Corrections | | | | | CFM | Tot
Cool
Capa | ing | Sensible
Cooling
Capacity | | Heat
of
Rejection | I | 'ower
nput
Vatts | Heating
Capacity | | eat
of
rption | Power
Input
Watts | | 2800
3100
3250 | 0.97
0.98
0.99 | 88
94 | 0.972
0.986
0.993 | | 0.975
0.992
1.001 | (|).945
).973
).986 | 0.975
0.988
0.994 | 0.
0. | 979
989
995 | 1.028
1.014
1.007 | | 3400
3800
4200 | 1.00
1.01
1.03 | 16 | 1.000
1.019
1.038 | | 1.010
1.034
1.057 | 1 | .000
.036
.073 | 1.000
1.016
1.033 | 1. | 000
014
028 | 1.000
0.981
0.962 | ## HS/HL Horizontal 120 Rated Air Flow 4000 CFM Shaded areas represent HL/VL units only. | | HS - Water temperature rang
HL - Water temperature rang | | | | | | | | |---|--|------|---|--|--|--|--|--| |) | Heating Performance - EAT 70°F (COP = 3.8) | UNIT | - | | | | | | | | | Cool | ing Performance - 1 | EAT 80/67°F (EE | R = 11.2) | Heating Per | formance - EAT 70° | PF (COP = 3.8) | UNIT | |--------------------------------------|---------------------------------|---|--|---|---|---|---|---|-----------------------------| | GPM | EWT °F | TOTAL
BTUH | SENSIBLE
BTUH | HEAT OF
REJECTION
BTUH | POWER
INPUT
WATTS | HEATING
BTUH | HEAT OF
ABSORPTION
BTUH | POWER
INPUT
WATTS | WATER
PRESSURE
DROP | | 15.5
22.7
32.4
41.3 | 40
40
40
40 | 142400
144984
147517
148360 | 96965
98648
99806
101082 | 174500
174780
175600
175970 | 9410
8729
8230
8090 | OPERATI
97532 | ON NOT RECON | MMENDED | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 50
50
50
50 | 136199
139716
143241
144085 | 95738
97819
99387
100236 | 170810
172250
174400
174670 | 10053
9532
9130
8963 | 101558
110224
117327
120195 | 65023
72640
77274
79709 | 10707
11010
11740
11846 | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 60
60
60
60 | 132686
135874
139821
141947 | 93692
96161
98129
99390 | 165300
167700
169700
171700 | 9556
9351
8754
8738 | 122898
132906
141034
148524 |
83933
91822
96876
99533 | 11422
12030
12916
14360 | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 60
60
60
60 | 134600
139700
142900
144600 | 98800
102500
104900
106100 | 167400
170136
171882
172221 | 9509
8738
8227
7966 | 118200
126000
131200
133900 | 87808
93751
97524
99327 | 8922
9486
9896
10116 | 5,4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 70
70
70
70 | 127100
132300
135400
137000 | 93300
97000
99400
100500 | 163758
166504
167184
167678 | 10619
9866
9366
9112 | 136300
144600
150000
152800 | 100673
106690
110484
112336 | 10450
11109
11582
11834 | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32. 4
41.3 | 85
85
85
85 | 119000
120800
124000
125700 | 85100
88700
9 1000
92200 | 156782
159468
161838
162309 | 12286
11557
11076
10830 | 163600
172300
178000
180900 | 120203
126099
129924
131747 | 12739
13545
14112
14412 | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 90
90
90
90 | 113700
117050
120200
121900 | 82350
85900
88200
89450 | 155620
158333
160380
160864 | 12841
12122
11646
11403 | | | | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 95
95
95
95 | 108400
113300
116400
118100 | 79600
83100
85400
86700 | 154457
157197
158922
159418 | 13396
12686
12215
11975 | | | | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 105
105
105
105 | 101000
105800
108900
110500 | 74100
77600
79900
81100 | 150815
153452
155358
155701 | 14508
13814
13355
13120 | | | | 5.4
11.6
23.6
38.4 | | 15.5
22.7
32.4
41.3 | 110
110
110
110
110 | OP
102193
102612 | 81355
82895 | RECOMMEND
130896
129888 | 12661
12648 | | | | 5.4
11.6
23.6
38.4 | Interpolation is permissible. Extrapolation is not. **Bold Face** = ARI Conditions ## Correction Factors | For Va | ariations | In | Entering | Air | Temperature | |--------|-----------|----|----------|-----|-------------| |--------|-----------|----|----------|-----|-------------| | | Cooling C | Corrections | | | * Sensib | le equals Tota | ıl | Heating Corrections | | | | |-----------------|--------------------|-------------|---------------------------------|---------------|-------------------------|----------------|-------------------------|---------------------|---------------------|------------------|-------------------------| | Entering
Air | Total
Cooling | | Sensible Cooling | g Capacity En | itering Dry Bull |) | Heat
of | Entering | YY | Heat | Power | | °F WB | Capacity | 70° DB | 75° DB | 80° DB | 85° DB | 90° DB | Rejection | Air
°F DB / | Heating
Capacity | oī
Absorption | Input
Watts | | 61 | 0.910 | 0.763 | 1.030 | * | * | * | 0.895 | 60 | 1.025 | 1.047 | 0.965 | | 64 | 0.955 | 0.615 | 0.881 | 1.148 | * | * | 0.948 | 65 | 1.010 | 1.023 | 0.990 | | 67 | 1.000 | 0.466 | 0.733 | 1.000 | 1.267 | * | 1.002 | 70 | 0.995 | 1.000 | 1.015 | | 70 | 1.045 | | 0.585 | 0.852 | 1.118 | * | 1.055 | 75 | 0.980 | 0.977 | 1.040 | | 73 | 1.090 | | 0.436 | 0.703 | 0.970 | 1.139 | 1.109 | 80 | 0.965 | 0.953 | 1.065 | | | | , | | | | | | | For Va | riations In Ent | tering Air Flow | | | Cooling (| Corrections | | | | | | Heating Corrections | | | | | CFM | To
Cool
Capa | ling | Sensible
Cooling
Capacity | | Heat
of
Rejection | Ì | Power
Input
Watts | Heating
Capacity | He
of
Absor | Ī | Power
Input
Watts | | 3200 | 0.9 | | 0.968 | | 0.970 | | 0.938 | 0.972 | 0.9 | 76 | 1.032 | | 3600 | 0.9 | | 0.984 | | 0.990 | | 0.969 | 0.986 | 0.98 | 38 | 1.016 | | 3800 | 0.9 | | 0.992 | | 1.000 | | 0.985 | 0.993 | 0.99 | | 1.008 | | 4000 | 1.0 | | 1.000 | | 1.010 | | 1.000 | 1.000 | 1.00 | 00 | 1.000 | | 4200 | 1.0 | | 1.008 | | 1.020 | | 1.016 | 1.007 | 1.00 | 06 | 0.992 | | 4400 | 1.0 | 14 | 1.016 | | 1.030 | | 1.031 | 1.014 | 1.0 | 12 | 0.984 | * Factory connected tap. Field connection required to other taps. Sizes HS/HL - VS/VL 006 - 060 Based on wet air coil and clean air filter Do not extrapolate. | OIZCO I | 110/111 | - V D/ V | L 000 | - 000 E | Based on wet a | Do not extrapolate | | | | | |---------|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------| | Size | Fan
Speed | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | Minimum
CFM | Maximum
CFM | | 006 | HI
MED*
LO | 320
265
245 | 285
235
225 | 250
215
205 | 220
180
165 | 175 | | | 165 | 320 | | 009 | HI
MED*
LO | 375
340
325 | 335
315
300 | 295
280
265 | 258
245
235 | | | | 235 | 375 | | 012 | HI
MED*
LO | 435
385
320 | 400
360
305 | 365
330
290 | 335
305 | 300 | | | 290 | 435 | | 015 | HI
MED*
LO | 620
530
450 | 585
505 | 555
490 | 530
465 | 505
450 | 475 | | 450 | 620 | | 019 | HI
MED*
LO | 730
650
560 | 700
620 | 660
585 | 610
550 | 570 | | | 550 | 730 | | 024 | HI
MED*
LO | 1105
965
795 | 1050
910
750 | 980
850
695 | 900
770
640 | 810
695 | 700 | | 600 | 1105 | | 030 | HI
MED*
LO | 1190
1110
1000 | 1150
1070
960 | 1085
1005
910 | 1005
930
850 | 925
845
760 | 830
780 | 750 | 750 | 1190 | | 036 | HI
MED*
LO | 1500
1360
1290 | 1420
1310
1240 | 1340
1250
1190 | 1250
1190
1120 | 1170
1110
1030 | 1080
1000
930 | 990
900
- | 900 | 1500 | | 042 | HI
MED*
LO | 1580
1490
1210 | 1510
1415
1170 | 1425
1335
1125 | 1340
1255
1080 | 1250
1170
1040 | 1165
1085
1000 | 1080 | 1000 | 1580 | | 048 | HI
MED*
LO | 2130
1980
1810 | 2050
1900
1730 | 1960
1810
1650 | 1860
1720
1570 | 1750
1620
1490 | 1630
1520
1400 | 1470
1400
- | 1400 | 2130 | | 060 | HI
MED*
LO | 2200
2110
2060 | 2140
2050
2000 | 2080
2000
1940 | 2010
1940
1880 | 1940
1870
1820 | 1860
1800
1760 | 1740
1710
1700 | 1700 | 2200 | Maximum CFM 3000 Minimum CFM 1800 Size HS/HL 072 Based on wet air coil and clean air filter. | SCFM | | | | | | | (| CFM Extern | al Static Pre | essure (in wg | .) | | | | | | |----------|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------|--------------|--------------|-------------| | Air Flow | | 0.20 | 0.25 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 | | 1800 | BHP
RPM
Turns Out | 0.27
560
5.0 | 0.28
590
4.5 | 0.30
610
4.0 | 0.34
660
3.5 | 0.38
700
2.5 | 0.42
740
1.5 | 0.45
770
5.0 | | | | | | | | | | 2000 | BHP
RPM
Turns Out | 0.34
600
5.0 | 0.36
625
4.0 | 0.39
650
3.5 | 0.43
690
2.5 | 0.47
735
2.0 | 0.52
770
5.0 | 0.54
810
4.0 | 0.59
840
3.0 | 0.63
880
2.5 | | - | | | | | | 2200 | BHP
RPM
Turns Out | 0.44
640
3.0 | 0.46
665
3.5 | 0.48
690
2.5 | 0.53
730
2.0 | 0.58
770
5.0 | 0.63
810
4.0 | 0.68
850
3.0 | 0.73
880
2.5 | 0.77
905
1.5 | 0.80
845
1.0 | 0.84
980
0.5 | | | | | | 2400 | BHP
RPM
Turns Out | 0.55
690
3.0 | 0.57
710
2.5 | 0.60
730
2.0 | 0.65
765
5.0 | 0.70
800
4.0 | 0.76
840
3.0 | 0.82
880
2.5 | 0.87
910
1.5 | 0.92
940
1.0 | 0.96
970
0.5 | 1.00
990
0.0 | 1.03
1110 | 1.20
1140 | | | | 2600 | BHP
RPM
Turns Out | 0.68
730
2.0 | 0.71
750
1.5 | 0.73
770
5.0 | 0.79
800
4.0 | 0.84
840
3.0 | 0.90
875
2.5 | 0.98
920
1.5 | 1.03
950
1.0 | 1.08
980
0.5 | 1.14
1000
0.0 | 1.18
1030 | 1.23
1050 | 1.27
1075 | 1.32
1105 | 1.41
112 | | 2800 | BHP
RPM
Turns Out | 0.83
780
5.0 | 0.86
790
4.0 | 0.89
810
3.5 | 0.95
880
3.0 | 1.00
910
2.5 | 1.07
950
2.0 | 1.14
980
1.0 | 1.21
1010
0.5 | 1.27
1040
0.0 | 1.33
1060 | 1.37
1090 | 1.43
1110 | 1.48
1135 | 1.54
1160 | 1.59 | | 3000 | BHP
RPM
Tums Out | 1.01
820
3.5 | 1.04
840
3.0 | 1.07
855
2.5 | 1.13
890
2.0 | 1.19
920
1.5 | 1.25
950
1.0 | 1.34
990
0.5 | 1.40
1020
0.0 | 1.47
1050 | 1.54
1080 | 1.58
1100 | 1.65
1120 | 1.71
1150 | 1.77
1170 | 1.83
119 | Shaded area = Special sheaves required. RPM above range of standard sheaves or motor. Bold Face = 2 HP Motor required. For applications requiring higher static pressures, contact your local representative. Size HS/HL 096 Based on wet air coil and clean air filter. Maximum CFM 4200 Minimum CFM 3000 HS Minimum CFM 2800 HL | SCFM | | | | | | | | CFM Extern | al Static Pre | ssure (in we | ;.) | | | ······ | | |----------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------| | Air Flow | | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 | | 3000 | BHP
RPM
Turns Out | 0.80
980 |
0.87
1023
5.0 | 0.94
1064
4.0 | 1.06
1105
3.5 | 1.09
1144
2.5 | 1.16
1183
2.0 | 1.23
1220
1.0 | 1.30
1256
0.5 | 1.37
1292
0.0 | 1.45
1327 | 1.52
1362 | 1.42
1365 | 1.49
1399 | 1.56
1433 | | 3200 | BHP
RPM
Turns Out | 0.94
1034
5.0 | 1.01
1074
4.0 | 1.08
1114
3.5 | 1.21
1153
2.5 | 1.23
1191
2.0 | 1.30
1228
1.0 | 1.37
1264
0.5 | 1.44
1299
0.0 | 1.51
134 | 1.59
1368 | 1.66
1402 | 1.67
1403 | 1.56
1437 | 1.63
1470 | | 3400 | BHP
RPM
Turns Out | 1.09
1094
4.0 | 1.16
1133
3.0 | 1.23
1172
2.5 | 1.29
1209
2.0 | 1.36
1246
1.0 | 1.43
1282
0.5 | 1.49
1317
0:0 | 1.56
1351 | 1.63
1386 | 1.70
1419 | 1.77
1452 | 1.83
1484 | 1.90
1516 | 1.97
1548 | | 3600 | BHP
RPM
Turns Out | 1.27
1143
3.0 | 1.34
1180
2.5 | 1.41
1216
1.5 | 1.55
1252
1.0 | 1.55
1287
0.5 | 1.62
1322
0.0 | 1.69
1356 | 1.76
1389 | 1.83
1422 | 1.91
1454 | 1.98
1486 | : | | | | 3800 | BHP
RPM
Turns Out | 1.46
1198
2.0 | 1.53
1234
1.5 | 1.60
1268
1.0 | 1.75
1303
0.0 | 1.74
1337 | 1.80
1370 | 1.87
1403 | 1.94
1435 | | | | | | | | 4000 | BHP
RPM
Turns Out | 1.68
1254
1.0 | 1.74
1288
0.5 | 1.81
1321
0.0 | 1.96
1354 | 1.94
1387 | | | | | | | | | | | 4200 | BHP
RPM
Turns Out | 1.91
1310
0.0 | 1.97
1342 | | | | | | | | | | | | | Shaded area = Special sheaves required. RPM above range of standard sheaves or motor. Bold Face = 2 HP Motor required Size HS/HL 120 Based on wet air coil and clean air filter. Maximum CFM 4400 Minimum CFM 3200 HS Minimum CFM 2800 HL | SCFM | | | | | | | (| CFM Extern | al Static Pre | ssure (in wg | .) | | | | | |----------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|--------------|--------------| | Air Flow | | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 | | 3200 | BHP
RPM
Turns Out | 0.80
978 | 0.86
1009
5.0 | 0.91
1040
4.5 | 0.96
1070
4.0 | 1.01
1098
3.5 | 1.06
1126
3.0 | 1.11
1153
2.5 | 1.16
1180
2.0 | 1.21
1207
1.5 | 1.26
1232
1.0 | 1.30
1258
0.5 | 1.36
1282
0.0 | 1.41
1306 | 1.46
1329 | | 3400 | BHP
RPM
Tums Out | 0.94
1031
5.0 | 0.99
1061
4.5 | 1.05
1090
4.0 | 1.10
1119
3.5 | 1.15
1146
3.0 | 1.20
1173
2.5 | 1.24
1199
2.0 | 1.29
1225
1.5 | 1.35
1250
1.0 | 1.40
1275
0.5 | 1.44
1300
0.0 | 1.49
1323 | 1.54
1347 | 1.59
1369 | | 3600 | BHP
RPM
Turns Out | 1.10
1085
4.0 | 1.15
1113
3.5 | 1.20
1141
3.0 | 1.25
1168
2,5 | 1.30
1195
2.0 | 1.35
1221
1.5 | 1.39
1246
1.0 | 1.45
1270
1.0 | 1.50
1295
0.5 | 1.55
1319
0.0 | 1.59
1343 | 1.64
1 366 | 1.69
1388 | 1.74
1410 | | 3800 | BHP
RPM
Turns Out | 1.27
1139
3.0 | 1.32
1166
2.5 | 1.37
1193
2.0 | 1.42
1219
1.5 | 1.47
1244
1.0 | 1.52
1269
0.5 | 1.56
1293
0.0 | 1.61
1317 | 1.66
1341 | 1.71
1364 | 1.75
1387 | 1.80
1409 | 1.85
1431 | 1.90
1452 | | 4000 | BHP
RPM
Turns Out | 1.46
1193
2.0 | 1.51
1219
1.5 | 1.56
1245
1.5 | 1.61
1270
1.0 | 1.65
1294
0.5 | 1.70
1318
0.0 | 1.74
1341 | 1.79
1 364 | 1.84
1387 | 1.89
1410 | 1.93
1432 | 1.97
1453 | | | | 4200 | BHP
RPM
Tums Out | 1.67
1248
1.5 | 1.72
1272
1.0 | 1.76
1297
0.5 | 1.81
1321
0.0 | 1.86
1344 | 1.90
1368 | 1.94
1390 | 1.98
1412 | | | | | | | | 4400 | BHP
RPM
Tums Out | 1.90
1303
0.0 | 1.94
1326 | 1.99
1350 | | | | | | | | | | | | Shaded area = Special sheaves required. RPM above range of standard sheaves or motor. For applications requiring higher static pressures, contact your local representative. ## Models 006-060 | | | | | Minimum | MAX. Fuse | MAX. | LRA | RLA | | | Blower | |------|------------------|----------------|--------|--------------|-----------|-----------------|--------------|-------------|--------------|--------------|--------| | Size | Model No. | Voltages | Phases | Circuit | or HAC R | Circuit Breaker | Comp. | Comp. | Blower | Total | Motor | | | | | | Ampacity | Breaker | Canada Only | (ea.) | (ea.) | FLA | FLA | HP | | 006 | HS/HL | 208/230 | 1 | 3.8 | 15 | 15 | 15.9 | 2.8 | 0.34 | 3.14 | 1/25 | | | | 265 | 1 | 3.6 | 15 | 15 | 12.3 | 2.6 | 0.34 | 2.94 | 1/25 | | | HS/HL & | 115 | 1 | 10.5 | 15 | 15 | 40.0 | 7.0 | 0.90 | 7.90 | 1/8 | | 009 | | 208/230 | 1 | 5.2 | 15 | 15 | 20.0 | 3.5 | 0.80 | 4.30 | 1/10 | | | VS/VL | 265 | 1 | 4.8 | 15 | 15 | 16.0 | 3.1 | 0.90 | 4.00 | 1/6 | | 012 | HS/HL & | 208/230 | 1 | 6.6 | 15 | 15 | 31.2 | 4.6 | 0.80 | 5.40 | 1/10 | | | VS/VL | 265 | 1 | 6.2 | 15 | 15 | 27.0 | 4.2 | 0.90 | 5.10 | 1/10 | | 015 | HS/HL & | 208/230 | 1 | 7.8 | 15 | 15 | 31.2 | 5.5 | 0.92 | 6.42 | 1/10 | | 010 | VS/VL | 265 | i | 6.8 | 15 | 15 | 27.0 | 4.8 | 0.83 | 5.63 | 1/10 | | 019 | HS/HL & | 208/230 | ı | 11.3 | 15 | 15 | 43.0 | 7.6 | 1.20 | 8.80 | 1/8 | | 019 | VS/VL | 265 | 1 | 10.2 | 15 | 15
15 | 45.0
45.0 | 6.6 | 0.90 | 7.50 | 1/8 | | | | | | | | | | | | | | | 024 | HS/HL &
VS/VL | 208/230
265 | 1
1 | 12.5
10.9 | 15
15 | 20
15 | 49.0
46.5 | 8.1
7.1 | 1.50
1.30 | 9.60
8.40 | 1/4 | | | VOIVL | 203 | 1 | 10.9 | 13 | 13 | 40.5 | 7.1 | 1.30 | 0.40 | 1/4 | | | HS/HL & | 208/230 | 1 | 15.6 | 25 | 25 | 61.0 | 10.2 | 1.60 | 11.8 | 1/4 | | 030 | VS/VL | 265 | 1 | 13.7 | 20 | 20 | 58.0 | 9.2 | 1.30 | 10.5 | 1/4 | | | HS/HL & | 208/230 | 3 | 10.0 | 15 | 20 | 50.0 | 6.7 | 1.60 | 8.30 | 1/4 | | | VS/VL | 460 | 3 | 5.1 | 15 | 15 | 25.0 | 3.4 | 0.80 | 4.20 | 1/4 | | | HS/HL & | 208/230 | 1 | 22.6 | 35 | 35 | 78.0 | 15.5 | 3.20 | 18.7 | 1/2 | | 036 | VS/VL | 265 | 1 | 20.8 | 30 | 30 | 73.8 | 14.1 | 3.20 | 17.3 | 1/2 | | | HS/HL & | 208/230 | 3 | 16.5 | 25 | 25 | 59.5 | 10.6 | 3.20 | 13.8 | 1/2 | | | VS/VL | 460 | 3 | 7.6 | 15 | 15 | 30.7 | 4.6 | 1.80 | 6.40 | 1/2 | | | HS/HL & | 208/230 | 1 | 25.3 | 40 | 35 | 88.0 | 17.7 | 3.20 | 20.8 | 1/2 | | 042 | VS/VL | | | | | 2.5 | | | | | | | | HS/HL &
VS/VL | 208/230
460 | 3 3 | 17.7
8.2 | 25
15 | 25
15 | 65.1
32.8 | 11.6
5.1 | 3.20
1.80 | 14.7
6.90 | 1/2 | | | YOUYL | 400 | 3 | 0.2 | 13 | 13 | 32.0 | J.1 | 1.00 | 0.90 | 1/2 | | | HS/HL & | 208/230 | . 1 | 32.3 | 50 | 40 | 95.4 | 21.5 | 5.40 | 26.9 | 3/4 | | 048 | VS/VL
HS/HL & | 208/230 | 3 | 22.7 | 35 | 35 | 82.0 | 13.8 | 5.44 | 19.2 | 3/4 | | 0-10 | VS/VL | 460 | 3 | 10.9 | 15 | 15 | 41.0 | 6.9 | 2.20 | 9.10 | 3/4 | | | | 575 | 3 | 8.3 | 15 | 15 | 36.0 | 5.1 | 1.40 | 6.50 | 3/4 | | | HS/HL & | 208/230 | 1 | 40.3 | 60 | 50 | 125.0 | 27,6 | 5.80 | 33.4 | 1 | | | VS/VL | 200/230 | 1 | 40.5 | 00 | JU | 123.0 | 21.0 | 3.00 | 33,4 | 1 | | 060 | HS/HL & | 208/230 | 3 | 26.0 | 40 | 40 | 90.0 | 16.1 | 5.80 | 21.9 | 1 | | | VS/VL | 460 | 3 | 12.3 | 15 | 20 | 45.0 | 7.7 | 2.60 | 10.3 | 1 | | | | 575 | 3 | 10.3 | 15 | 20 | 36.0 | 6.4 | 2.30 | 8.70 | 1 | NOTE: 208/230 Voltage is factory tapped at 208V. Field connection required for 230V. ## Models 072-120 (Belt Driven Units) | | | | | Minimum | MAX. Fuse | MAX. | LRA | RLA | | | Blower | |------|-----------|----------|--------|----------|-----------|-----------------|---------|---------|--------|-------|--------| | Size | Model No. | Voltages | Phases | Circuit | or HACR | Circuit Breaker | Comp. | Comp. | Blower | Total | Motor | | | | | | Ampacity | Breaker | Canada Only | (ea.) | (ea.) | FLA | FLA | HP | | | HS/HL | 208/230 | 3 | 29.6 | 40 | 40 | 59.5(2) | 10.6(2) | 5.7 | 26.9 | 1 1/2 | | 072 | | 460 | 3 | 13.0 | 15 | 15 | 30.7(2) | 4.6(2) | 2.6 | 11.8 | 1 1/2 | | | HS/HL | 208/230 | 3 | 31.5 | 40 | 40 | 59.5(2) | 10.6(2) | 7.5 | 28.7 | 2* | | | | 460 | 3 | 13.8 | 20 | 15 | 30.7(2) | 4.6(2) | 3.4 | 12.6 | 2* | | | HS/HL | 208/230 | 3 | 36,8 | 50 | 50 | 82.0(2) | 13.8(2) | 5.7 | 33.3 | 1 1/2 | | | | 460 | 3 | 18.6 | 25 | 25 | 41.0(2) | 6.9(2) | 2.6 | 16.4 | 1 1/2 | | | | 575 | 3 | 13.4 | 15 | 15 | 36.0(2) | 51.2(2) | 1.9 | 12.1 | 1 1/2 | | 096 | HS/HL | 208/230 | 3 | 38.6 | 50 | 50 | 82.0(2) | 13.8(2) | 7.5 | 35.1 | 2* | | | * | 460 | 3 | 19.4 | 25 | 25 | 41.0(2) | 6.9(2) | 3.4 | 17.2 | 2* | | | | 575 | 3 | 14.0 | 20 | 20 | 36.0(2) | 51.2(2) | 2.5 | 12.7 | 2* | | | HS/HL | 208/230- | 3 | 43.7 | 60 | 60 | 90.0(2) | 16.1(2) | 7.5 | 39.7 | 2 | | | | 460 | 3 | 20.7 | 25 | 25 | 45.0(2) | 7.7(2) | 3.4 | 18.8 | 2 | | | | 575 | 3 | 16.9 | 20 | 20 | 36.0(2) | 6.4(2) | 2.5 | 15.3 | 2 | | 120 | HS/HL | 208/230- | 3 | 44.8 | 60 | 60 | 90.0(2) | 16.1(2) | 8.6 | 40.8 | 3* | | | | 460 | 3 | 21.6 | 30 | 30 | 45.0(2) | 7.7(2) | 4.3 | 19.7 | 3* | | | | 575 | 3 | 17.8 | 20 | 25 | 36.0(2) | 6.4(2) | 3.4 | 16.2 | 3* | | Size | Model No. | Ship. Wt. | Oper. Wt. | | Refrigerant | to-Air Heat Exch | | Refrig. | | Hi Volt. | | | |------|----------------|------------|------------|--------------|-------------|------------------|------------|--------------|----------|--------------------------|--------------|--------------| | | | Lbs. | Lbs. | Face Are | No. of Rows | Copper Tube | No. of Fin | Charge | No. of | Knockout | Blower | Blower | | | | | | Sq. Ft. | Rows Deep | Sz. OD in. | Inch | R-22/CKT oz. | Circuits | In. | Diameter | Width | | 006 | HS/HL | 118 | 108 | 0.97 | 2 | 3/8 | 11 | 12 | 1 | 7/8, 1-1/8 | 5.500 | 5.0 | | 009 | HS/VS | 118 | 108 | 0.97 | 2 | 3/8 | 12 | 16 | 1 | 7/8, 1-1/8 | 5.500 | 5.0 | | | HL/VL | 118 | 108 | 0.97 | 2 | 3/8 | 12 | 17 | 1 | 7/8, 1-1/8 | 5,500 | 5.0 | | 012 |
HS/VS
HL/VL | 123
123 | 117
117 | 0.97
0.97 | 2 2 | 3/8
3/8 | 12
12 | 16
17 | 1
1 | 7/8, 1-1/8
7/8, 1-1/8 | 6.0
6.0 | 4.0
4.0 | | 015 | HS/VS | 160 | 150 | 2.22 | 3 | 3/8 | 12 | 28/25 | 1 | 7/8, 1-1/8 | 6.0 | 5.0 | | | HL/VL | 160 | 150 | 2.22 | 3 | 3/8 | 12 | ., 25 | î | 7/8, 1-1/8 | 6.0 | 5.0 | | 019 | HS | 180 | 173 | 2.22 | 3 | 3/8 | 12 | 30 | 1 | 7/8, 1-1/8 | 7.625 | 7.0 | | | VS
HL | 180
180 | 173
173 | 2.22 | 3 3 | 3/8
3/8 | 12 | 30 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | | VL | 180 | 173 | 2.22
2.22 | 3 | 3/8 | 12
12 | 32
32 | 1 | 7/8, 1-1/8
7/8, 1-1/8 | 7.625
9.0 | 7.0
7.0 | | 024 | HS/VS | 220 | 200 | 2.50 | 3 | 3/8 | 13 | 46 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | | HL/VL | 235 | 215 | 2.50 | 3 | 3/8 | 13 | 38 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | 030 | HS/VS | 220 | 200 | 2.50 | 3 | 3/8 | 13 | 44 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | | HL/VL | 235 | 215 | 2.50 | 3 | 3/8 | 13 | 51 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | 036 | HS/VS | 235 | 225 | 3.33 | 2 | 3/8 | 14 | 35 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | | HL/VL | 235 | 225 | 3.33 | 2 | 3/8 | 14 | 36 | 1 | 7/8, 1-1/8 | 9.0 | 7.0 | | 042 | HS/VS
HL/VL | 240
240 | 230 | 3.33
3.33 | 3 | 3/8
3/8 | 12
12 | 50 | 1
1 | 7/8, 1-1/8 | 9.0 | 8.0 | | | | | , | 3.33 | 3 | - | | 44 | 1 | 7/8, 1-1/8 | 9.0 | 8.0 | | 048 | HS/VS
HL/VL | 300
300 | 290
290 | 4.17
4.17 | 2 2 | 3/8
3/8 | 14
14 | 46
42 | 1 | 7/8
7/8 | 10.0
10.0 | 10.0
10.0 | | | | | | | | | | | | | 10.0 | | | 060 | HS/VS
HL/VL | 357
357 | 347
347 | 4.17
4.17 | 3 3 | 3/8
3/8 | 14
14 | 82
82 | 1 | 7/8
7/8 | 11.0
11.0 | 10.0
10.0 | | 072 | | - | | | 1 | - | | | | | | - | | 0/2 | HS
HL | 635
635 | 615
615 | 6.66
6.66 | 2 2 | 3/8
3/8 | 14
14 | 38
36 | 2 2 | 1 3/8
1 3/8 | 12.0
12.0 | 11.0
11.0 | | 096 | HS | 665 | 645 | 8.33 | 2 | 3/8 | 14 | 46 | 2 | 1 3/8 | 10.0(2) | 10.0(2) | | | HL | 665 | 645 | 8.33 | 2 | 3/8 | 14 | 42 | 2 | 1 3/8 | 10.0(2) | 10.0(2) | | 120 | HS | 675 | 655 | 8.33 | 3 | 3/8 | 14 | 82 | 2 | 1 3/8 | 11.0(2) | 10.0(2) | | | HL | 675 | 655 | 8.33 | 3 | 3/8 | 14 | 82 | 2 | 1 3/8 | 11.0(2) | 10.0(2) | ## **Operating Limits** ### Environment This equipment is designed for indoor installation ONLY. A voltage variation of +/- 10% of nameplate utilization voltage is acceptable. Three-phase system imbalance shall not exceed 2%. ## **Starting Conditions** #### HS/VS Units: HS/VS Units start and operate in an ambient of 40°F, with entering air at 40°F, with entering water at 70°F, with both air and water at the flow rates used in the ARI Standard 320-86 rating test, for initial start-up in winter. HL/VL Unit Heat Pumps will start and operate in an ambient of 40°F, with entering air at 40°F, with entering water at 40°F, with both air and water at the flow rates used in the ARI Standard 320-86 rating test, for initial start-up in winter. Note: These are not normal or continuous operating conditions. It is assumed that such a start-up is for the purpose of bringing the building space up to occupancy temperature. ## Air and Water Limits | | HS/ | VS | HL | /VL | |---------------------------|------------|---------|----------|---------| | | Cooling | Heating | Cooling | Heating | | Min. Ambient Air | 50°F | 50°F | 40°F | 40°F | | Rated Ambient Air | 80°F | 70°F | 80°F | 70°F | | Max. Ambient Air | 100℉ | 85°F | 100°F | 85°F | | Min. Entering Air | 50°F | 50°F | 50°F | 40°F | | Rated Entering Air, db/wb | 80/67°F | 70°F | 80/67°F | 70°F | | Max. Entering Air, db/wb | , 100/83°F | 80°F | 100/83°F | 80°F | #### Water Limits | | HS/ | VŠ | HL | /VL | |-----------------------|---------|---------|---------|---------| | | Cooling | Heating | Cooling | Heating | | Min. Entering Water | 55°F | 55°F | 40°F | 40°F | | Normal Entering Water | 85°F | 70°F | 85°F | 70°F | | Max. Entering Water | 110°F | 90°F | 110°F | 90°F | NOTES: (A) Minimum Air and Water conditions can only be used at ARI flow rates. (B) Only one maximum or minimum value may be used with HS/VS Units, all other parameters must be at normal conditions. HL/VL Units may have up to two values at maximum or minimum with all other parameters at normal condition. ## Horizontal Models 006/009/012 Supply Air Duct locations (LS shown on main drawing) Note: Air flow pattern can be converted in the field by interchanging the blower discharge panel (w/blower assembly attached) with the blower service panel. Only LS to LB and RS to RB can be converted. | MODEL | | A | В | С | D | E | F | G | H | J | K | L | M | N | 0 | P | R | S | U | v | |-------|--------|-----|-----|--------|-------|-----|-----|-----|-------|-------|----|----|----|-------|----|-----|-----|-----|----|-------| | | INCHES | 34 | 20 | 11 1/8 | 5 3/4 | 8 | 7 | 4 | 2 3/8 | 6 1/8 | 1 | 1 | 1 | 4 3/4 | 2 | 15 | 9 | 1/2 | 1 | 4 1/2 | | 006 | MM | 854 | 508 | 283 | 146 | 203 | 178 | 102 | 60 | 156 | 25 | 25 | 25 | 121 | 51 | 381 | 229 | 13 | 25 | 114 | | | INCHES | 34 | 20 | 11 1/8 | 5 3/4 | 8 | 7 | 4 | 2 3/8 | 6 1/8 | 1 | 1 | 1 | 4 3/4 | 2 | 15 | 9 | 1/2 | 1 | 4 1/2 | | 009 | MM | 854 | 508 | 283 | 146 | 203 | 178 | 102 | 60 | 156 | 25 | 25 | 25 | 121 | 51 | 381 | 229 | 13 | 25 | 114 | | 012 | INCHES | 34 | 20 | 11 1/8 | 5 3/4 | 8 | 7 | 4 | 2 3/8 | 6 1/8 | 1 | 1 | 1 | 4 3/4 | 2 | 15 | 9 | 1/2 | 1 | 4 1/2 | | 012 | MM | 854 | 508 | 283 | 146 | 203 | 178 | 102 | 60 | 156 | 25 | 25 | 25 | 121 | 51 | 381 | 229 | 13 | 25 | 114 | ## Horizontal Models 015/019/024/030 Note: Air flow pattern can be converted in the field by interchanging the blower discharge panel (w/blower assembly attached) with the blower service panel. Only LS to LB and RS to RB can be converted. | MODEL | | A | В | C | D | E | F | G | H | J | K | L, | M | N | 0 | P | R | S | U | V | |-------|--------|------|-----|-----|--------|-----|-------|-------|-------|--------|-------|----|-------|-------|----|--------|--------|-----|-----|-------| | | INCHES | 43 | 20 | 17 | 7 3/4 | 10 | 6 3/4 | 5 1/4 | 1 1/4 | 12 | 2 3/8 | 1 | 4 1/4 | 7 1/4 | 2 | 20 1/2 | 14 3/4 | 1/2 | 4 | 5 | | 015 | MM | 1092 | 508 | 432 | 197 | 254 | 171 | 133 | 32 | 305 | 60 | 25 | 108 | 184 | 51 | 521 | 375 | 13 | 102 | 127 | | | INCHES | 43 | 20 | 17 | 10 1/4 | 7 | 6 1/2 | 5 1/4 | 1 1/4 | 11 | 2 3/8 | 1 | 1 1/4 | 7 1/4 | 2 | 20 1/2 | 14 3/4 | 1/2 | 4 | 6 1/2 | | 019 | MM | 1092 | 508 | 432 | 260 | 178 | 165 | 133 | 32 | 279 | 60 | 25 | 32 | 184 | 51 | 521 | 375 | 13 | 102 | 165 | | 004 | INCHES | 43 | 20 | 19 | 10 | 9 | 5 1/4 | 5 1/4 | 1 1/4 | 11 | 2 3/8 | 1 | 4 | 7 1/4 | 2 | 20 1/2 | 16 3/4 | 1/2 | 4 | 5 1/4 | | 024 | MM | 1092 | 508 | 483 | 254 | 229 | 133 | 133 | 32 | 279 | 60 | 25 | 102 | 184 | 51 | 521 | 425 | 13 | 102 | 133 | | 030 | INCHES | 43 | 20 | 19 | 10 | 9 | 5 1/4 | 5 1/4 | 1 1/4 | 13 1/4 | 2 3/8 | 1 | 4 | 7 1/4 | 2 | 20 1/2 | 16 3/4 | 1/2 | 4 | 5 1/4 | | 030 | MM | 1092 | 508 | 483 | 254 | 229 | 133 | 133 | 32 | 337 | 60 | 25 | 102 | 184 | 51 | 521 | 425 | 13 | 102 | 133 | ## Horizontal Models 036/042 Supply Air Duct locations (LS shown on main drawing) Note: Field rework of air flow arrangement (LS to LB, LB to LS, RS to RB, RB to RS) requires sheet metal | MODEL | | A | В | С | D | E | F | G | Н | J | K | L | N | О | P | R | S | U | V | |-------|--------|------|-----|-----|--------|--------|-------|-------|-------|--------|-------|----|--------|-------|--------|--------|-------|-------|-------| | | INCHES | 47 | 20 | 21 | 10 3/8 | 9 3/8 | 7 1/2 | 3 1/4 | 3 7/8 | 13 3/8 | 2 1/4 | 1 | 11 | 2 3/4 | 22 3/4 | 18 3/8 | 1 3/4 | 3 3/4 | 3 1/4 | | 036 | MM | 1194 | 508 | 533 | 264 | 238 | 191 | 83 | 98 | 340 | 57 | 25 | 279 | 70 | 578 | 467 | 44 | 95 | 83 | | | INCHES | 47 | 20 | 21 | 10 3/8 | 10 3/4 | 6 | 3 1/4 | 3 5/8 | 13 3/8 | 2 1/4 | 1 | 10 1/2 | 2 3/4 | 22 3/4 | 18 3/8 | 1 3/4 | 3 3/4 | 2 3/4 | | 042 | MM | 1194 | 508 | 533 | 264 | 273 | 152 | 83 | 92 | 340 | 57 | 25 | 267 | 70 | 578 | 467 | 44 | 95 | 67 | ## Horizontal Models 048/060 1. Water outlet 2. Water inlet 3. Condensate Drain 1" FPT 3/4" FPT 3/4" FPT 7/8" X 1 1/8" DIA., 22mm x 29mm DIA. 1/2" DIA., 13mm DIA. 4. High Voltage Access 5. Low Voltage Access 1/2 CAP - Control Access Panel BSP - Blower Service Panel CSP - Compressor Service Panel Return Air Duct Size 18 1/4" High X 29 3/4" Wide 464mm High X 756mm Wide Nominal Filter Size 16 x 20 X 1 Two Required 406mm x 508mm x 25mm Two Required | MODEL | | A | В | С | D | E | F | G | H | J | K | L | M | N | 0 | P | R | S | T | U | V | |-------|--------|--------|--------|-----|-----|-----|-------|-------|----|-------|-------|-------|--------|-------|-------|--------|-------|-----|----|--------|-------| | | INCHES | 36 1/4 | 36 1/4 | 21 | 15 | 15 | 1 3/4 | 2 5/8 | 1 | 4 7/8 | 3 3/8 | 3 7/8 | 18 | 7 1/2 | 5 3/8 | 17 1/2 | 3 1/8 | 32 | 1 | 18 1/4 | 1 1/2 | | 048 | MM | 921 | 921 | 533 | 381 | 381 | 44 | 67 | 25 | 124 | 86 | 98 | 457 | 191 | 137 | 445 | 79 | 813 | 25 | 464 | 38 | | 0.5 | INCHES | 36 1/4 | 36 1/4 | 21 | 15 | 15 | 1 3/4 | 2 /58 | 1 | 5 1/8 | 1 7/8 | 2 5/8 | 18 1/2 | 7 1/2 | 5 3/8 | 17 1/2 | 3 1/8 | 32 | 1 | 18 1/4 | 1 1/2 | | 060 | MM | 921 | 921 | 533 | 381 | 381 | 44 | 67 | 25 | 130 | 48 | 67 | 470 | 191 | 137 | 445 | 79 | 813 | 25 | 464 | 38 | ## Horizontal Model 072 Note: Available in left return, straight blow only (LS) as shown | MODEL | | A | В | С | D | E | F | G | Н | J | K | L | M | N | 0 | P | R | S | Т | U | V | |-------|--------|--------|-----|-----|-----|--------|----|---|-----|-------|--------|--------|-------|--------|-----|-------|----|-------|-------|-----|--------| | | INCHES | 72 1/4 | 36 | 21 | 16 | 14 1/2 | 3 | 1 | 16 | 1 7/8 | 19 3/4 | 16 1/2 | 3 1/4 | 21 1/4 | 1/2 | 2 1/2 | 1 | 4 1/4 | 1 3/8 | 3/4 | 13 1/2 | | 072 | MM | 1835 | 914 | 533 | 406 | 368 | 76 | | 406 | 48 | 502 | 419 | 83 | 540 | 13 | 64 | 25 | 108 | 35 | 19 | 343 | ## Horizontal Models 096/120 Note: Available in left return, straight blow only (LS) as shown | MODEL | | A | В | C | D | E | F | G | Н | J | K | L | M | N | 0 | P | R
| S | T | U | V | |-------|--------|--------|--------|-----|--------|-------|-------|----|--------|-------|--------|--------|-------|--------|-----|-------|----|-------|-------|-------|--------| | | INCHES | 72 1/4 | 36 1/4 | 21 | 15 1/8 | 3 1/4 | 3 1/4 | 1 | 15 1/8 | 1 7/8 | 18 1/4 | 17 | 3 1/4 | 20 | 1/2 | 2 1/2 | 1 | 4 1/8 | 1 1/4 | 1 7/8 | 13 1/2 | | 096 | MM | 1835 | 921 | 533 | 384 | 83 | 83 | 25 | 384 | 48 | 464 | 432 | 83 | 508 | 13 | 64 | 25 | 105 | 32 | 48 | 343 | | 120 | INCHES | 72 1/4 | 36 1/4 | 21 | 15 1/8 | 2 5/8 | 4 1/4 | 1 | 15 1/8 | 1 7/8 | 18 1/4 | 18 5/8 | 3 1/4 | 22 1/4 | 1/2 | 2 1/2 | 1 | 4 1/8 | 1 1/4 | 1 7/8 | 13 1/2 | | | MM | 1835 | 921 | 533 | 384 | 67 | 108 | 25 | 384 | 48 | 464 | 473 | 83 | 565 | 13 | 64 | 25 | 105 | 32 | 48 | 343 | Vertical Models 009/012 ## **Standard Arrangement** | MODEL | | A | В | , C | D | E | F | G | K | L | M | N | 0 | P | |-------|--------|-------|-------|-------|-------|--------|--------|--------|----|-------|-------|-------|----|-------| | | INCHES | 3 7/8 | 9 7/8 | 1 3/4 | 7 | 19 1/8 | 19 1/8 | 24 1/8 | 1 | 8 3/4 | 5 5/8 | 2 3/8 | 1 | 4 1/2 | | 009 | MM | 98 | 251 | 44 | 178 | 486 | 486 | 613 | 25 | 222 | 143 | 60 | 25 | 114 | | | INCHES | 3 7/8 | 8 7/8 | 1 5/8 | 7 3/8 | 19 1/8 | 19 1/8 | 24 1/8 | 1 | 8 3/4 | 5 5/8 | 2 3/8 | 1 | 4 1/2 | | 012 | MM | 98 | 251 | 41 | 187 | 486 | 486 | 613 | 25 | 222 | 143 | 60 | 25 | 114 | Vertical Models 015/019 ## **Standard Arrangement** 1. Water inlet . Water outlet 1/2" FPT 1/2" FPT 3/4" FPT 7/8" X 1 1/8" K.O. (22mm X 29mm K.O.) 1/2" DIA (13mm DIA) Condensate Drain 4. High Voltage Access 5. Low Voltage Access CAP - Control Access Panel BSP - Blower Service Panel CSP - Compressor Service Panel NRP - Non-Removable Panel Return Air Duct Size 18 3/4" High X 18 1/8" Wide 476mm High X 460mm Wide Nominal Filter Size 20" X 20" X 1" 508mm X 508mm X 25mm | MODEL | | A | В | C | D | E | F | G | H | J | K | L | M | N | 0 | P | R | S | |-------|--------|-------|-----|-------|--------|--------|--------|--------|--------|-------|-------|-------|-----|-------|-------|-------|--------|-------| | | INCHES | 5 1/2 | 10 | 9 1/4 | 7 5/8 | 21 1/8 | 21 1/8 | 37 1/2 | 11 7/8 | 9 3/4 | 1 7/8 | 3 7/8 | 6 | 5 3/8 | 1 1/8 | 1 5/8 | 14 1/2 | 7 1/4 | | 015 | MM | 140 | 254 | 235 | 194 | 537 | 537 | 953 | 302 | 248 | 48 | 98 | 152 | 137 | 29 | 41 | 368 | 184 | | 0.0 | INCHES | 6 | 9 | 5 5/8 | 12 5/8 | 21 1/8 | 21 1/8 | 37 1/2 | 12 7/8 | 9 3/4 | 1 7/8 | 3 7/8 | 6 | 5 3/8 | 1 1/8 | 1 5/8 | 14 1/2 | 7 1/4 | | 019 | MM | 140 | 229 | 143 | 321 | 537 | 537 | 953 | 327 | 248 | 48 | 98 | 152 | 137 | 29 | 41 | 368 | 184 | ## Vertical Models 024/030 ## **Standard Arrangement** | MODEL | | A | В | С | D | E | F | G | Н | J | K | L | M | N | 0 | P | R | S | |-------|--------|-------|--------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-----|-------|-------|----|--------|-------| | | INCHES | 5 3/4 | 11 5/8 | 7 5/8 | 12 3/4 | 23 1/4 | 23 1/4 | 37 1/2 | 13 1/8 | 9 3/4 | 1 7/8 | 3 7/8 | 6 | 5 3/8 | 1 1/2 | 1 | 14 1/2 | 7 1/4 | | 024 | MM | 146 | 295 | 194 | 324 | 591 | 591 | 953 | 33 | 248 | 48 | 98 | 152 | 137 | 38 | 25 | 368 | 184 | | | INCHES | 5 3/4 | 11 5/8 | 7 5/8 | 12 3/4 | 23 1/4 | 23 1/4 | 37 1/2 | 15 1/4 | 9 3/4 | 1 7/8 | 3 7/8 | 6 | 5 3/8 | 1 1/2 | 1 | 14 1/2 | 7 1/4 | | 030 | MM | 146 | 295 | 194 | 324 | 591 | 591 | 953 | 387 | 248 | 48 | 98 | 152 | 137 | 38 | 25 | 368 | 184 | FRONT INLET ## Vertical Models 036/042 ## **Standard Arrangement** | | MODEL | | A | В | C | D | E | F | G | H | J | K | L | M | N | О | P | R | S | |---|-------|--------|-------|--------|-------|--------|--------|--------|------|--------|-------|-------|-----|-------|-------|-------|-------|--------|-----| | | | INCHES | 4 1/4 | 12 5/8 | 6 7/8 | 11 5/8 | 25 3/8 | 25 3/8 | 42 | 15 1/2 | 7 1/2 | 2 3/8 | 4 | 5 3/4 | 5 3/8 | 1 1/2 | 1 1/4 | 16 1/2 | 6 | | | 036 | MM | 108 | 321 | 175 | 295 | 644 | 644 | 1062 | 394 | 191 | 60 | 102 | 146 | 137 | 38 | 32 | 419 | 152 | | l | | INCHES | 2 | 12 5/8 | 6 1/4 | 12 7/8 | 25 3/8 | 25 3/8 | 42 | 15 1/2 | 7 1/2 | 2 3/8 | 4 | 5 3/4 | 5 3/8 | 1 1/2 | 1 1/4 | 16 1/2 | 6 | | | 042 | MM | 51 | 321 | 159 | 327 | 644 | 644 | 1062 | 394 | 191 | 60 | 102 | 146 | 137 | 38 | 32 | 419 | 152 | **BACK INLET** ## Vertical Models 048/060 ## **Standard Arrangement** - 1. Water inlet 2. Water outlet **Condensate Drain** - 7/8" X 1 1/8" K.O. (22mm X 29mm K.O.) 1/2" DIA 4. High Voltage Access 5. Low Voltage Access (13mm DIA) - CAP Control Access Panel **BSP - Blower Service Panel CSP - Compressor Service Panel** NRP - Non-Removable Panel - Return Air Duct Size 24" High X 28" Wide 610mm High X 711mm Wide - **Nominal Filter Size** 28" X 25" X 1" 711mm X 635mm X 25mm | S | FRONT
OF UNIT | | | |---|------------------|---|---| | | | Α | N | | MODEL | | A | В | C. | D | E | F | G | Н | J | K | L | M | N | О | P | R | S | |-------|--------|-------|--------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|----|--------|-----| | | INCHES | 1 1/2 | 14 7/8 | 6 1/4 | 15 5/8 | 28 1/8 | 28 1/8 | 43 1/4 | 15 3/8 | 9 1/2 | 1 1/2 | 3 1/4 | 5 1/2 | 4 5/8 | 1 1/2 | 1 | 16 1/2 | 9 | | 048 | MM | 38 | 378 | 159 | 397 | 714 | 714 | 1099 | 391 | 241 | 38 | 83 | 140 | 117 | 38 | 25 | 419 | 229 | | | INCHES | 1 1/2 | 14 7/8 | 6 1/4 | 15 5/8 | 28 1/8 | 28 1/8 | 43 1/4 | 15 3/8 | 9 1/2 | 1 1/2 | 3 1/4 | 5 1/2 | 4 5/8 | 1 1/2 | 1 | 16 1/2 | 11 | | 060 | MM | 38 | 378 | 159 | 397 | 714 | 714 | 1099 | 391 | 241 | 38 | 83 | 140 | 117 | 38 | 25 | 419 | 279 | ## **Factory-Installed Options** ## **Air Flow Arrangements** Horizontal unit air flow arrangements can be supplied with Left-Return/Straight-Discharge, Right-Return/ Straight-Discharge, Left-Return/Back-Discharge or Right-Return/Back-Discharge air flow arrangements. All of these arrangements are available on units 006-042. For units larger than size 042, only Left-Return/ Straight-Discharge is available. Vertical units are available in Left-Return/Top-Discharge, Right-Return/ Top-Discharge, Back-Return/Top-Discharge or Front-Return/Top-Discharge. ## **Water Coils** In place of the standard steel/copper water coil, a cupronickel water coil is optional on all units. ## Sound Package The optional sound attenuation package includes a heavy dampening material on the compressor, a discharge muffler (units 19,000 BTU and larger) and 1/2" insulation with a 5 lb/cu-ft. density. All external panels are lined with a special 1/2" thick glass fiber dual density insulation. ## **Extended Range (HL UNITS)** Units are available for water systems with 110°F/43°C entering water conditions. In closed-loop systems, this increases the temperature swing of the loop from 40°F/4°C to 110°F/43°C, effectively doubling the storage capacity of the pipe loop and reducing the size of the heat rejector required. The increased temperature swing results in reduced operation of the boiler through more efficient heat transfer and use of recovered energy. ## Extra Extended Range (HE UNITS) Units are available for water/anti-freeze systems with fluid temperatures as low as 25°F/-4°C. This permits buildings to be directly coupled to the earth and can result in the elimination of both cooling towers and boilers. These units have insulated water coils and are specifically designed for operation at these low temperatures. Capacities and unit dimensions are separate from the products shown in this catalog and are available from your ClimateMaster representative. ### **Motorized Shut Off Valves** ClimateMaster can provide a motorized shut off valve for field installation. A wiring plug is provided on the unit to allow for easy connection. This feature allows variable pumping to be utilized. ## Water Regulating Valves Water regulating valves can be provided for variable pumping operations where the water pressure is 150 PSIG or less on sizes 006-042. The dual acting water regulating valve is controlled by the refrigerant pressure. By reducing the amount of water required, significant energy savings in pumping costs can be achieved. ## Water Regulating Valves For Cooling Only Where permitted by code, units may be connected to city water for cooling only operation. An optional direct acting water valve will modulate the water flow to provide optimum equipment operation and reduced water usage. **Optional** Air Flow **Patterns** ## Direct Digital Control (DDC) Board ClimateMaster can provide a DDC board (CMC-2000 Series, (See pages 46-47) which can be factory-mounted or field-installed. ClimateMaster will also work with other DDC board manufacturers to factory-mount their controllers, if so desired. Contact your ClimateMaster representative to discuss particular applications as there are usually unique requirements on each project. ## **Chicago Code Construction** This option includes features required to meet installation requirements within the jurisdiction of the City of Chicago Electrical Code. ## Air Filters Each water source heat pump can be provided with either field or factory-installed 2" filter racks and either glass fiber, permanent metal mesh or high efficiency 30% Class II ASHRAE Dust Spot pleated filters. ### **Paint** Standard horizontal units are produced with unpainted galvanized sheet metal. For exposed applications, factory-painted units are available in Polar Ice, baked enamel finish. All Vertical units are painted. ## **Field-Installed Options** ## Wall Mount Thermostats Wall-mounted thermostats are available for both manual and automatic change-over applications. The automatic change-over thermostats are one-stage heating/one-stage cooling with system "OFF-AUTO" switch and fan "ON-AUTO" switch. A LED is available to indicate a need for service. Manual change-over thermostats are one-stage heating/onestage cooling with "HEAT-OFF-COOL" system switch and "ON-OFF" fan switch. Electronic thermostats can be either automatic change-over or manual change-over with a LED for
service. For multiplecompressor units, this thermostat can be provided as a two-stage heat/two-stage cool version. An optional remote sensor is available for this thermostat and allows for temperature sensing up to 400 feet away. A programmable thermostat is available which operates in either manual or automatic change-over. The thermostat is a true 7 day programmable thermostat with up to 4 heating and cooling temperatures for each day of the week. ## **Supply and Return Water Hoses** The standard hoses are 2 feet long, made of galvanized steel, and have a UL94 rating. Optional stainless steel hoses are also available. ## **Self Balancing Hose Kits** Each hose kit includes two fire rated hoses, each 2 feet in length (3-foot length is optional), an automatic flow control valve with test port, two shut-off valves (one with a test port), a blow down valve and a Y-strainer. ### **Ball Valves** Brass ball valves rated 400 lb. w.o.g., memory stop can be provided. The following recommendations are ideas designed to promote efficient installation and operation of your unit. This information should not be interpreted as detailed installation procedures. For complete information on all proper installation procedures, please refer to your ClimateMaster Installation, Operation and Maintenance manual shipped with each order. - 1. Before installing a unit, ensure that adequate space is available for routine maintenance and service. See dimensional drawings for access panel locations. - 2. Electrical conduit, light fixtures, piping or any other electrical element should not be located directly below the installed unit. - 3. Provide room for easy access for filter changes. - 4. To ensure quiet performance of the Horizontal units, when using free return, always use a return air boot and an insulated discharge duct with a insulated 90° bend. For Vertical units, make sure that no line-of-sight path to the return air coil exists and that a similar discharge duct arrangement is used. Install Vertical units on vibration isolator pads. - 5. To ensure a proper, trouble-free installation, it is very important to flush the entire pipe-loop before any units are connected to it. Once the units are connected, make sure that each unit has the correct water flow and water temperature within the range of specifications. - Connect a condensate drain and trap to each unit according to the installation instructions provided with the unit. The condensate pipe must be sloped away from the unit towards a drain. - . The use of flexible hoses is recommended to eliminate vibration and noise transmission. If the unit must be removed for service, the use of hoses makes this task much easier. - 8. All electrical connections must be made in accordance with NEC and local codes. - 9. The units must be installed level or sloped slightly towards the condensate discharge. - 10. Never use water source heat pumps for temporary heating or cooling. - 11. Prior to system start-up, install a clean air filter in all 42 **ClimateMaster** © 5/92 # Typical Wiring Diagrams ## **Typical Three Phase, Two Compressor Unit Wiring Diagram** For HS/HL Units (Sizes 72, 96, 120) Three Phase, 60hz, 208/230/460/575 Volt Three Phase, 50hz, 380 Volt Two Compressor Units Only. ## **CMC-2000 Series Controllers** The CMC-2000 Series Controllers are designed to enhance heat pump unit performance with the ability to coordinate complete systems. CMC 2000 Series Controllers offer either complete stand-alone unit control or allow you to connect your heat pump system to a DDC control system which includes lighting and other energy saving controls. The CMC Series is the most advanced controller made by any heat pump manufacturer today. And best of all, the CMC-2000 Series board is the ONLY electronic controller designed to accommodate future upgrades without board replacement. #### **Standard Basic Functions** The basic controller package (CMC-2001) offers all the standard features available with electromechanical systems, plus 13 additional standard functions. This group of added features include intelligent re-set, designed to automatically restart a unit within a specific period of time following a fault, given the fault has been adequately corrected. Also included is the fail-safe reversing valve operation, a feature that energizes the reversing valve on cooling and de-energizes the reversing valve on heating. ## **Options** Three styles of CMC Controllers (CMC-2001, 2005, 2010) offer up to 39 standard and optional features, from basic unit control to full DDC system control. With three basic control boards to choose from, along with a variety of options on each, you get the right amount of control you want for the price you want to pay. ## **Communications/ Future Upgrades to DDC Status** The CMC-2000 Series incorporates a socket which accommodates the future installation of an RS-485 interface board. This on-board programming system allows communication with local or remote PCs via a modem. With the availability of the RS-485, you have the flexibility to upgrade your control system as your demands require, giving you the freedom to choose the system you need for today, without sacrificing the upgrade you may need in the furture. The RS-485 interface board can be included on new products or simply snapped into place at a later date in the field. No other controller offers you this kind of flexibility. ## Diagnostics Five on-board diagnostics highlight seven different possible reasons for unit malfunction, speeding-up service time, eliminating unnecessary service charges and minimizing down-time. Diagnostics can be observed from a remote location when the RS-485 option is utilized. ## **Unit/System Operating Efficiency** Random-start, demand load-shed, night set-back, demand limit and protective circuits all work to enhance the performance of your system. These features are standard on CMC-2000 Series Electronic Controllers. ## **Comfort Control** Hi-Low fan speed controls, motorized air damper controls, and the ability to utilize more accurate electronic thermostats adds up to increased comfort through superior unit control. ## **CMC-2000 Series Electronic Controllers.** ClimateMaster offers three standard electronic controller configurations, each with optional features available so that you can choose the | atlable, so that you can choose the ntrol you need and pay only for the features you want. | Electro-
Mechanical | Electronic CMC-2001 | Electronic CMC-2005 | Electronic CMC-2010 | |--|------------------------|---------------------|---------------------|---------------------| | High Pressure Protection | S | S | S | S | | Low Pressure Protection | S i | S | S | S | | Low Refrigerant Gas Protection | S | S | S | S | | Low Water Flow Protection | S | S | S | S | | Room Temperature Set Point - In Room | S | S | S | S | | Room Temperature Set Point - Remote | | | | s* | | Display Room Temperature - In Room | S | S | S | S | | Display Room Temperature - Remote | | | | s* | | Demand Load Shed | 0 | S | S | S | | Low Voltage Protection | 0 | S | S | S | | High Voltage Protection | 0 | S | S | S | | Emergency Shutdown | 0 | S | S | S | | Random Start | 0 | S | S | S | | Anti-Short-Cycle Time-Delay | 0 | S | S | S | | Condensate Overflow Switch | 0 | S | S | S | | Intelligent Re-set | 0 | S | S | S | | Quick Service Test | | S | S | S | | Reduced Reversing Valve Operation | | S | S | S | | LED Status Lights | 0 | S | S | s* | | Night Setback | 0 | S | S | S | | Night Setback Override - Remote | | | | S | | Night Setback Override - Local | 0 | S | S | S | | High/Low Fan Speed | | | S | S | | Pump Restart | 0 | 0 | S | s* | | Compressor Run Hours | | | | s* | | Compressor Starts | | | | s* | | Fan Run Hours | | | | s* | | Remote Alarm | | | | S | | Local Alarm | 0 | O | 0 | 0 | | Local Alarm For Filter Replacement | 0 | 0 | 0 | 0* | | Remote Alarm For Filter Replacement | | | | S | | Local Alarm For Condensate Overflow | 0 | 0 | 0 | 0* | | Remote Alarm For Condensate Overflow | | , | | s* | | RS-485 Communication | | u | u | S | | Outdoor-Air Damper-Control | 0 | 0 | e | e | | Motorized Water Valve | 0 | 0 | e | e | | Totally-Automated Building Interface | - | | | 0 | | Leaving Water Temperature Display | | | | 0 | | Multiple Units On One Thermostat | none | 3 | 3 | 3 | s = Standard Feature 46 **ClimateMaster** © 5/92 o = Optional Feature u = Upgrade e = either Outdoor-Air Damper-Control or Motorized Water Valve can be selected, but not both. ^{*} To use this feature requires a personal computer to link to the system and run the required ClimateMaster software. # Specifications 5 3 2 ## Ceiling Concealed Horizontal and/or Concealed Vertical Heat Pumps #### General Furnish and install ClimateMaster Water Source Heat Pumps, as indicated on the plans with capacities and characteristics as listed in the schedule and the specifications that follow. #### **Horizontal Only** Units shall be ClimateMaster model HS for standard range $60^{\circ}/95^{\circ}$ F ($15.5^{\circ}/35.0^{\circ}$ C), HL for extended range $40^{\circ}/110^{\circ}$ F ($4.4^{\circ}/43^{\circ}$ C) and HE for ground coupled systems $25^{\circ}/110^{\circ}$ F ($-3.85^{\circ}/43^{\circ}$ C). Equivalent units from other manufacturers can be proposed provided approval to bid is given 10 days prior to bid closing. #### **Vertical Only** Units shall be ClimateMaster model VS for standard range 60°/95° F (15.5°/35.0° C), VL for extended range 40°/110° F (4.4°/43° C) and VE for ground coupled systems 25°/110° F (-3.85°/43° C). Equivalent units from other manufacturers can be proposed provided approval to bid is given 10 days prior to bid closing. All equipment listed in this section must be rated in accordance with American Refrigeration Institute (ARI), Underwriters Laboratories (UL) and Canadian Standards Association (CSA). The units shall
have ARI, UL, CSA labels. All units shall be factory tested under normal operating conditions at nominal water flow rates. Units which are tested without water flow are not acceptable. Ground coupled units must be rated in accordance with the Canadian Earth Energy Association (CEEA) (Canada only). #### **Basic Construction** #### **Horizontal Only** Units shall have one of the following air flow arrangements, Right-Discharge/Left-Inlet; Left-Discharge/Right-Inlet; Back-Discharge/ Left-Inlet; or Back-Discharge/Right-Inlet as shown on the plans. If units with these arrangements are not used, the contractor is responsible for any extra costs incurred by other trades. If other arrangements make servicing difficult the contractor must provide access panels and clear routes to ease service. These changes in layout must be approved by the architect. #### **Vertical Only** Units shall have one of the following air flow arrangements, Left-Return/Top-Discharge, Right-Return/Top-Discharge, Back-Return/Top-Discharge, or Front-Return/Top-Discharge inlet as shown on the plans. If units with these arrangements are not used, the contractor is responsible for any extra costs incurred by other trades. If other arrangements make servicing difficult the contractor must provide access panels and clear routes to ease service. These changes in layout must be approved by the architect. Horizontal shall be fabricated from heavy gauge galvanized (GS90) sheet metal. All interior surfaces shall be lined with 1/2 inch, 1 1/2 lb. acoustic type glass fiber insulation. All fiberglass shall be coated and have exposed edges tucked under flanges to prevent the introduction of glass fibers into the airstream. All insulation must meet NFPA 90A. **Option:** All units shall have a painted baked enamel finish. The color will be Polar Ice. Plain galvanized units are not acceptable. Units must have an insulated panel separating the fan compartment from the compressor compartment. Units with the compressor in the airstream are not acceptable. Units shall have a factory installed 1 inch thick filter bracket for side filter removal. Units shall have a 1 inch thick throwaway type glass fiber filter. Contractor shall purchase one spare set of filters and replace factory-shipped filters on completion of start-up. Filters shall be standard sizes. If units utilize non-standard filter sizes then the contractor shall provide 12 spare filters for each unit. **Option:** Contractor shall install 2 inch filter brackets and 2 inch glass fiber throwaway filters on all units. Cabinets shall have separate holes and knockouts for entrance of line voltage and low voltage control wiring. Supply and return water connections shall be copper FPT fittings and shall be securely mounted flush to the cabinet allowing for connection to a flexible hose without the use of a back-up wrench. Water connections which protrude through the cabinet or require the use of a backup wrench shall not be allowed. To facilitate installation in minimal space requirements, units rated 30,000 BTUH (7908 watts) and under shall have all electrical and water connections on the end of the cabinet opposite the duct connections. Contractor shall be responsible for any extra costs involved in the installation of units which do not have this feature. Contractor must also ensure that non-specified units can be easily removed for servicing and coordinate locations of electrical conduit and lights with the electrical contractor. **Option:** Manufacturer shall provide a sound attenuation package that shall include the following as a minimum. - a. All units 15,000 BTUH (5008 watts) and up must have a compressor discharge muffler. - b. Compressor side panels and base pan must have closed cell insulation rated at 5 lb./cu-ft. density. - c. All reciprocating compressors must have high density damping material applied to the compressor shell. - d. All units 15,000 BTUH (3954 watts) and up shall have the compressors mounted on springs. Any units not meeting this design shall be operated and demonstrated to the engineer at the manufacturers expense. Any units not having this construction and producing noise problems on installation shall be repaired at the manufacturer's expense. #### Fan and Motor Assembly Units rated 60,000 BTUH (15815 watts) and under shall have a direct-drive centrifugal fan. The fan motor shall be 3-speed, permanently lubricated, PSC type with thermal overload protection. Units supplied without permanently lubricated motors must provide external oilers for easy service. The fan motor shall be isolated from the fan housing by torsionally flexible isolation. Units rated 72,00 BTUH (18978 watts) and above shall have a belt drive fan assembly. The assembly shall include a forward curved fan wheel, housing, solid steel fan shaft encased in ball bearings, fan pulley and adjustable motor sheave. The motor shall be a three phase, open type with internal thermal overload protection. The motor shall be mounted on an adjustable base for proper belt tension. The fan and motor assembly must be capable of overcoming the external static pressures as shown on the schedule. External static pressure rating of the unit shall be based on a wet coil. Ratings based on a dry coil shall NOT be acceptable. ## Refrigerant Circuit Units shall have a sealed refrigerant circuit including a hermetic compressor, a refrigerant metering device, a finned tube refrigerant to air heat exchanger, a reversing valve, a coaxial (tube in tube) refrigerant to water heat exchanger, and safety controls including a high pressure switch, a low pressure sensor, and a low water temperature (thermostat) switch. Access fittings shall be factory installed on high and low pressure refrigerant lines to facilitate field service. Activation of any safety device shall prevent compressor operation via a lockout relay. The lockout relay shall be reset at the thermostat or at the contractor supplied disconnect switch. Units which may be reset at the disconnect switch only shall not be acceptable. **Option:** Coaxial water to refrigerant heat exchangers shall be cupro nickel. Hermetic compressors shall be internally sprung, externally isolated, with thermal overload protection and shall be located in an insulated compartment to minimize sound transmission. Units above 15,000 BTUH (3954 watts) shall have the compressor mounted on spring isolators to reduce noise and vibration transmission. Rubber mounts for these larger units are not acceptable. Refrigerant to air heat exchangers shall utilize enhanced aluminum fins and rifled copper tube construction rated to withstand 425 PSI (2930 KPA) refrigerant working pressure. Refrigerant to water heat exchangers shall be of copper inner water tube and steel refrigerant outer tube design, rated to withstand 450 PSI (3103 KPA) working refrigerant pressure and 400 PSI (2758 KPA) working water pressure. Refrigerant metering shall be accomplished by capillary tubes for units intended for use in standard operating ranges, or expansion valves for units intended for use in expanded operating ranges. Reversing valves shall be four-way solenoid activated refrigerant valves which shall fail to heating operation should the solenoid fail to function. If the reversing valve solenoid fails to cooling, a low temperature thermostat must be provided to prevent over-cooling an already cold room. #### Electrical A control box shall be located within the unit and shall contain a transformer, controls for compressor, reversing valve and fan motor operation and shall have a terminal block for low voltage field wiring connections. Units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 volts and shall provide heating or cooling as required by the wall thermostat. Two compressor units shall have a solid state time delay relay to prevent both compressors from starting simultaneously. #### Thermostats (Select one) Thermostats shall be manual change over with OFF-HEAT-COOL system switch and fan ON-AUTO switch. Thermostats shall be automatic change-over with OFF-AUTO system switch and fan ON-AUTO switch. Thermostats shall be manual change over with OFF-HEAT-COOL system switch and fan ON-AUTO switch. A low temperature bulb set 10° F (5.6° C) below the room set-point shall maintain a minimum temperature when an unoccupied scheme is employed. A manual override switch of the unoccupied mode shall be furnished. Thermostats shall be automatic change-over with OFF-AUTO system switch and fan ON-AUTO switch. A low temperature bulb set 10° F (5.6° C) below the room set-point shall maintain a minimum temperature when an unoccupied scheme is employed. A manual override switch of the unoccupied mode shall be furnished. 48 ClimateMaster © 5/92 ClimateMaster 49 # pecifications ## Ceiling Concealed Horizontal and/or Concealed Vertical Heat Pumps #### General Furnish and install ClimateMaster Water Source Heat Pumps, as indicated on the plans with capacities and characteristics as listed in the schedule and the specifications that follow. #### Horizontal Only Units shall be ClimateMaster model HS for standard range 60°/95° F (15.5°/35.0° C), HL for extended range 40°/110° F (4.4°/43° C) and HE for ground coupled systems 25°/110° F (-3.85°/43° C). Equivalent units from other manufacturers can be proposed provided approval to bid is given 10 days prior to bid closing. #### Vertical Only Units shall be ClimateMaster model VS for standard range 60°/95° F (15.5°/35.0° C), VL for extended range 40°/110° F (4.4°/43° C) and VE for ground coupled systems 25°/110° F (-3.85°/43° C). Equivalent units from other manufacturers can be proposed provided approval to bid is given 10 days prior to bid closing. All equipment listed in this section must be rated in accordance with American Refrigeration Institute (ARI), Underwriters Laboratories (UL) and Canadian Standards Association (CSA). The units shall have ARI, UL, CSA
labels. All units shall be factory tested under normal operating conditions at nominal water flow rates. Units which are tested without water flow are not acceptable. Ground coupled units must be rated in accordance with the Canadian Earth Energy Association (CEEA) (Canada only). #### **Basic Construction** #### **Horizontal Only** Units shall have one of the following air flow arrangements, Right-Discharge/Left-Inlet; Left-Discharge/Right-Inlet; Back-Discharge/ Left-Inlet; or Back-Discharge/Right-Inlet as shown on the plans. If units with these arrangements are not used, the contractor is responsible for any extra costs incurred by other trades. If other arrangements make servicing difficult the contractor must provide access panels and clear routes to ease service. These changes in layout must be approved by the architect. Units shall have one of the following air flow arrangements, Left-Return/Top-Discharge, Right-Return/Top-Discharge, Back-Return/ Top-Discharge, or Front-Return/Top-Discharge inlet as shown on the plans. If units with these arrangements are not used, the contractor is responsible for any extra costs incurred by other trades. If other arrangements make servicing difficult the contractor must provide access panels and clear routes to ease service. These changes in layout must be approved by the architect. Horizontal shall be fabricated from heavy gauge galvanized (GS90) sheet metal. All interior surfaces shall be lined with 1/2 inch. 1 1/2 lb. acoustic type glass fiber insulation. All fiberglass shall be coated and have exposed edges tucked under flanges to prevent the introduction of glass fibers into the airstream. All insulation must meet NFPA 90A. **Option:** All units shall have a painted baked enamel finish. The color will be Polar Ice. Plain galvanized units are not acceptable. Units must have an insulated panel separating the fan compartment from the compressor compartment. Units with the compressor in the airstream are not acceptable. Units shall have a factory installed 1 inch thick filter bracket for side filter removal. Units shall have a 1 inch thick throwaway type glass fiber filter. Contractor shall purchase one spare set of filters and replace factory-shipped filters on completion of start-up. Filters shall be standard sizes. If units utilize non-standard filter sizes then the contractor shall provide 12 spare filters for each unit. Option: Contractor shall install 2 inch filter brackets and 2 inch glass fiber throwaway filters on all units. Cabinets shall have separate holes and knockouts for entrance of line voltage and low voltage control wiring. Supply and return water connections shall be copper FPT fittings and shall be securely mounted flush to the cabinet allowing for connection to a flexible hose without the use of a back-up wrench. Water connections which protrude through the cabinet or require the use of a backup wrench shall not be allowed. To facilitate installation in minimal space requirements, units rated 30,000 BTUH (7908 watts) and under shall have all electrical and water connections on the end of the cabinet opposite the duct connections. Contractor shall be responsible for any extra costs involved in the installation of units which do not have this feature. Contractor must also ensure that non-specified units can be easily removed for servicing and coordinate locations of electrical conduit and lights with the electrical contractor. **Ontion:** Manufacturer shall provide a sound attenuation package that shall include the following as a minimum. - a. All units 15,000 BTUH (5008 watts) and up must have a compressor discharge muffler. - b. Compressor side panels and base pan must have closed cell insulation rated at 5 lb./cu-ft. density. - c. All reciprocating compressors must have high density damping material applied to the compressor shell. - d. All units 15,000 BTUH (3954 watts) and up shall have the compressors mounted on springs. Any units not meeting this design shall be operated and demonstrated to the engineer at the manufacturers expense. Any units not having this construction and producing noise problems on installation shall be repaired at the manufacturer's expense. #### Fan and Motor Assembly Units rated 60,000 BTUH (15815 watts) and under shall have a direct-drive centrifugal fan. The fan motor shall be 3-speed, permanently lubricated, PSC type with thermal overload protection. Units supplied without permanently lubricated motors must provide external oilers for easy service. The fan motor shall be isolated from the fan housing by torsionally flexible isolation. Units rated 72,00 BTUH (18978 watts) and above shall have a belt drive fan assembly. The assembly shall include a forward curved fan wheel, housing, solid steel fan shaft encased in ball bearings, fan pulley and adjustable motor sheave. The motor shall be a three phase, open type with internal thermal overload protection. The motor shall be mounted on an adjustable base for proper belt tension. The fan and motor assembly must be capable of overcoming the external static pressures as shown on the schedule. External static pressure rating of the unit shall be based on a wet coil. Ratings based on a dry coil shall NOT be acceptable. ## Refrigerant Circuit Units shall have a sealed refrigerant circuit including a hermetic compressor, a refrigerant metering device, a finned tube refrigerant to air heat exchanger, a reversing valve, a coaxial (tube in tube) refrigerant to water heat exchanger, and safety controls including a high pressure switch, a low pressure sensor, and a low water temperature (thermostat) switch. Access fittings shall be factory installed on high and low pressure refrigerant lines to facilitate field Activation of any safety device shall prevent compressor operation via a lockout relay. The lockout relay shall be reset at the thermostat or at the contractor supplied disconnect switch. Units which may be reset at the disconnect switch only shall not be acceptable. Option: Coaxial water to refrigerant heat exchangers shall be cupro nickel. Hermetic compressors shall be internally sprung, externally isolated, with thermal overload protection and shall be located in an insulated compartment to minimize sound transmission. Units above 15,000 BTUH (3954 watts) shall have the compressor mounted on spring isolators to reduce noise and vibration transmission. Rubber mounts for these larger units are not acceptable. Refrigerant to air heat exchangers shall utilize enhanced aluminum fins and rifled copper tube construction rated to withstand 425 PSI (2930 KPA) refrigerant working pressure. Refrigerant to water heat exchangers shall be of copper inner water tube and steel refrigerant outer tube design, rated to withstand 450 PSI (3103 KPA) working refrigerant pressure and 400 PSI (2758 KPA) working water pressure. Refrigerant metering shall be accomplished by capillary tubes for units intended for use in standard operating ranges, or expansion valves for units intended for use in expanded operating ranges. Reversing valves shall be four-way solenoid activated refrigerant valves which shall fail to heating operation should the solenoid fail to function. If the reversing valve solenoid fails to cooling, a low temperature thermostat must be provided to prevent over-cooling an already cold room. #### Electrical A control box shall be located within the unit and shall contain a transformer, controls for compressor, reversing valve and fan motor operation and shall have a terminal block for low voltage field wiring connections. Units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 volts and shall provide heating or cooling as required by the wall thermostat. Two compressor units shall have a solid state time delay relay to prevent both compressors from starting simultaneously. #### Thermostats (Select one) Thermostats shall be manual change over with OFF-HEAT-COOL system switch and fan ON-AUTO switch. Thermostats shall be automatic change-over with OFF-AUTO system switch and fan ON-AUTO switch Thermostats shall be manual change over with OFF-HEAT-COOL system switch and fan ON-AUTO switch. A low temperature bulb set 10° F (5.6° C) below the room set-point shall maintain a minimum temperature when an unoccupied scheme is employed. A manual override switch of the unoccupied mode shall be furnished. Thermostats shall be automatic change-over with OFF-AUTO system switch and fan ON-AUTO switch. A low temperature bulb set 10° F (5.6° C) below the room set-point shall maintain a minimum temperature when an unoccupied scheme is employed. A manual override switch of the unoccupied mode shall be furnished. #### Hose Kits All units 120,000 BTUH (31631 watts) and below shall be connected with hoses. The hoses shall be 2 feet (61mm) long, metal braided and fire rated to meet UL 94. Non fire rated hoses are not acceptable. **Option:** All units 120,000 BTUH (31631 watts) and below shall be connected with hoses. The hoses shall be 2 feet (61mm)long, braided stainless steel, complete with adaptors. ### Optional #### **Electro-Mechanical Controls** - a. Units shall be supplied with a random start relay. - b. Units shall be supplied with a 24-volt night set back relay. Relay shall be NO or NC as shown on the control wiring diagram. - c. Units shall be supplied with an anti-short cycle relay. - d. Units shall be supplied with a condensate overflow switch. - e. Units shall be supplied with a 24-volt compressor cycling relay for demand load shed control. - f. Units shall be provided with a dry contact to initiate external alarm. #### **Optional** ### CMC-2001 Solid-State Control System Unit shall have a solid-state control system. The control shall interface with any type of wall thermostat mechanical or electronic. The control system shall have the following features. - a. Anti-short cycle time delay on compressor operation, time delay shall be 5 minutes
minimum. - b. Random start on power up mode or return from night setback. - c. Minimized reversing valve operation for extended life and quiet operation. - d. Night setback override from low temperature thermostat. - e. 2-hour override initiated by a signal from wall thermostat. - f. Low voltage protection. - g. High voltage protection. - h. Ability to work with any thermostat. - i. Single grounded wire to initiate night setback, demand load shed, or emergency shutdown. - j. Unit shutdown on high or low refrigerant pressures. - k. Unit shutdown on low water temperature. - 1. Option to reset unit at thermostat or disconnect. - m. Automatic intelligent reset. Unit shall automatically reset the unit 10 minutes after trip if the fault has cleared. Should a fault re-occur within 30 minutes after reset, then permanent lockout will occur. - n. Ability to defeat time delays for servicing. - Light emitting diodes (LED) to indicate high pressure, low pressure, low voltage, high voltage, freeze protection, condensate overflow and control voltage status. - p. Control logic shall only move the reversing valve when cooling is called for the first time. The reversing valve shall be held in this position until the first call for heating. This scheme ensures quiet operation and increased valve life. Only control schemes that provide this reduced reversing valve operation will be accepted. - q. Thermostat shall be single stage automatic changeover with system OFF-AUTO switch and fan ON-Auto Switch. Thermostat shall incorporate an LED to indicate fault. If an unoccupied control is employed the thermostat shall have a low temperature setting 10° F (-12° C). below set-point to maintain unoccupied temperature. A momentary contact re-set switch shall be provided to initiate the two hour override. - r. Control board shall have an 8 pin plug to allow the future addition of RS485 DDC circuitry. Control boards that cannot be upgraded to DDC by plugging in a module shall not be allowed. - s. Control board shall allow up to 3 units to be operated from one thermostat without any auxiliary controls. - t. Optional 24 volt relay shall be required to provide dry contact alarm when used with a DDC system. #### **Optional** #### CMC-2005 Control System Shall have all the features of the CMC-2001 panel with the following additional features: - a. The ability to select high, medium or low fan speed. - b. A relay to operate an external damper. The control to be such that the damper will not open until 30 minutes after the unit comes back from unoccupied mode or the relay will operate a motorized water valve. Relay or damper action to be selectable from a dip switch on the printed circuit board. ## **Optional** ### CMC-2010 Control System Shall have all the features of the CMC-2001 panel with the following additional features: - a. The control board will be supplied with an RS-485 interface section. This will permit all units to be daisy chain connected by a 2-wire twisted pair shielded cable. "T" Tapping of the RS-485 Communications bus is not permitted, neither is the use of wire nuts. This contractor is responsible for all heat pump control wiring. The units shall be segregated into groups of 32. Each group connected to a UCI (unitary controller interface). All UCI's will be wired together with a 2-wire twisted shielded cable. A TAP interface and an IBM compatible computer shall be supplied. - b. All boards will have the electronic addresses FACTORY SET. The electronic address and the unit tagging shall be on the carton and on a nameplate affixed to the unit. In order to prevent field errors on site addressing is NOT PERMITTED. The computer shall utilize a 286 chip as a minimum and have a 20M hard drive, a single 3.5" floppy drive and a color monitor. The WSHP manufacturer shall supply the software to supervise the operation of the individual WSHP units. This software must provide as a minimum the following: - a. Unoccupied control. - b. Emergency shutdown. - c. Demand limit control (Demand input by others) - d. Individual alarms for each fault if unit fails. - e. Water leaving temperature from each unit. - f. Ability to change room set points. - g. Ability to select high, medium or low fan speed. - h. Graphics of an individual unit or group of units. Complete with point readings displayed. - i. The ability to read individual points at fixed intervals thus provide trends. - j. Show the number of hours of compressor run time. The unit manufacturer shall load the software and ensure that all units are communicating as part of the start-up procedure. The contractor is responsible to correct any wiring errors. Specific building graphics are not produced by the manufacturer but are custom made by the owner. Graphics may be purchased from the WSHP manufacturer under a separate quotation. #### **Optional Features** #### CMC-2001 and CMC-2010 - a. The ability to select high, medium or low fan speed. - b. A relay to operate an external damper. The control to be such that the damper will not open until 30 minutes after the unit comes back from unoccupied or the relay will operate a motorized water valve. Relay action to be selectable from a dip switch on the printed circuit board. ## CMC-2010 only: - c. Provide an electronic room sensor. - Provide a digital room thermostat with set point adjustment, sensor and override button. - d. Ability to read leaving water temperature. - e. Ability to read compressor discharge temperature. - f. Show the number of compressor starts. Standard on CMC 2010 - g. Show the number of hours of fan operation. Standard on CMC 2010 ## Limited Express Warranty Limitation of Remedies and Liability It is expressly understood that unless a statement is specifically identified as a warranty, statements made by ClimateMaster, Inc., a Delaware corporation, ("CM") or its representatives, relating to CM's products, whether oral, written or contained in any sales literature, catalog or agreement, are not express warranties and do not form a part of the basis of the bargain, but are merely CM's opinion or commendation of CM's products. Except as specifically set forth herein, THERE IS NO EXPRESS WARRANTY as to any of CM's products and CM MAKES NO WARRANTY OF MERCHANTABILITY OF THE GOODS OR OF THE FITNESS OF THE GOODS FOR ANY PARTICULAR PURPOSE. #### GRANT OF LIMITED EXPRESS WARRANTY CM warrants CM products purchased and retained in the United States of America and Canada to be free from defects in material and workmanship under normal use and maintenance as follows: (1) All complete air conditioning, heating, and/or heat pump units built or sold by CM for 12 months from date of unit start-up or 18 months from date of shipment (from factory), whichever comes first; and (2) Repair and replacement parts, which are not supplied under warranty, for 90 days from date of shipment (from factory). All parts must be returned to CM's factory in Oklahoma City, Oklahoma, freight prepaid, no later than 60 days after the date of the failure of the part; if CM determines the part to be defective and within CM's Limited Express Warranty, CM shall, when such part has been either replaced or repaired, return such to a factory recognized dealer, contractor or service organization, F.O.B. CM's factory, Oklahoma City, Oklahoma, freight prepaid. The warranty on any part repaired or replaced under warranty expires at the end of the original warranty. This warranty does not apply to: (1) Air filters, fuses, refrigerant, oil; (2) Products relocated after initial installation; (3) Any portion of the system not supplied by CM; (4) Products on which the unit tags have been removed or defaced; (5) Products on which payment to CM is or has been in default; (6) Products which have defects or damage which result from improper installation, wiring, electrical imbalance characteristics or maintenance; or are caused by accident, misuse or abuse, fire, flood, alteration or mis-application of the product; (7) Products which have defects or damage which result from a contaminated or corrosive air or liquid supply, operation at abnormal temperatures, or unauthorized opening or refrigerant circuit; (8) Corrosion or abrasion; (9) Products manufactured or supplied by others; (10) Products which have been subjected to misuse, negligence or accidents; (11) Products which have been operated in a manner contrary to CM's printed instructions; or (12) Products which have defects, damage or insufficient performance as a result of insufficient or incorrect system design or the improper application of CM's products. CM is not responsible for: (1) the costs of labor, refrigerant, materials or services incurred in the removal of the defective part, or in obtaining and replacing the new or repaired part; or, (2) transportation costs of the defective part from the installation site to CM or of the return of any part not covered by CM's Limited Express Warranty. Limitation: This Limited Express Warranty is given in lieu of all other warranties. If, not withstanding the disclaimers contained herein, it is determined that other warranties exist, any such express warranty, and any implied warranties of fitness for a particular purpose and merchantability shall be limited to the duration of the Limited Express Warranty. ### LIMITATION OF REMEDIES In the event of the Limited Express Warranty, CM will only be obligated at CM's option to repair the failed part or unit, or to furnish a new or rebuilt part or unit for the part or unit which has failed. If after written notice to CM's factory in Oklahoma City, Oklahoma of each defect, malfunction or other failure and a reasonable number of attempts by CM to correct the defect, malfunction or other failure and the remedy fails of its essential purpose, CM shall refund the purchase price paid to CM in exchange for the return of the sold good(s). Said refund shall be the maximum liability of CM. THIS REMEDY IS THE SOLE AND EXCLUSIVE REMEDY AGAINST CM FOR
THE BREACH OF ANY WARRANTY OR FOR CM'S NEGLIGENCE OR IN STRICT LIABILITY. #### LIMITATION OF LIABILITY CM shall not be liable for any damages occasioned by any delay in performance or any default caused by war, government restrictions or restraints, strikes, material shortages, acts of God or any other reason beyond the sole control of CM. CM EXPRESSLY DISCLAIMS AND **EXCLUDES ANY LIABILITY FOR CONSEQUENTIAL OR** INCIDENTAL DAMAGE IN CONTRACT, FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY, OR IN TORT, WHETHER FOR NEGLIGENCE OR AS STRICT LIABILITY. CM MAKES NO WARRANTY AGAINST LATENT DEFECTS. ### **OBTAINING WARRANTY PERFORMANCE** Normally, the contractor or service organization who installed the products will provide warranty performance for the owner. Should the installer be unavailable, contact any CM recognized dealer, contractor or service organization. If assistance is required in obtaining warranty performance, Climate Master, Inc. Customer Service 7300 S.W. 44th Street Oklahoma City, Oklahoma 73179 (405) 745-6000 **NOTE:** Some states or Canadian provinces do not allow limitations on how long an implied warranty lasts, or the limitation or exclusion of consequential or incidental damages, so the foregoing exclusions and limitations may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state or Canadian province to Canadian province. Please refer to the CM Installation, Operation and Maintenance Manual for operating and maintenance instructions. The ClimateMaster Vertical Stacked unit features a pre-piped and wired cabinet ready for direct application of drywall or for installation as an exposed unit. This space saving unit is ideally suited for multi-floor applications such as hotels, apartments and condominiums. The unit's cabinet becomes an integral part of the building with removable chassis, supply air grille and decorative return air panels. Available in Sizes from 3/4 TON to 3 TONS The ClimateMaster Large Commercial Unit (LCU) water-to-air heat pumps meet the most demanding requirements for greater energy efficiencies in new and renovated multi-room structures. Typically concealed, the units are installed in equipment rooms with air ducted into a comfort areas, where it is then individually controlled to maintain a specific comfort zone. While operating efficiencies are excellent for both the heating and cooling cycles, the LCU from ClimateMaster offers significantly lower first costs and operating costs than equipment with comparable flexibility. Available in Sizes from 6 TONS to 25 TONS A free-standing, ductless unit, The ClimateMaster Console provides zoned heating and cooling without wall penetration. When combined with unitary cooling units in core areas, these units take advantage of the heat recovery concept of transferring central heat gain to perimeter areas during the heating season. The slim, streamlined design is an excellent choice for public buildings, offices, hospitals and hotels. Available in Sizes from 1/2 TON to 1 1/2 TONS ClimateMaster's line of Packaged Terminal Air Conditioners and Heat Pumps offers energy efficient thru-the-wall units with a variety of attractive features. These compact, quiet units are available in three individual cabinet styles, designed to satisfy a broad range of application demands. Available in Sizes from 1/2 TON to 1 1/2 TONS The ClimateMaster Classroom Ventilator is specially designed for efficient heating and cooling of the classroom environment while its rugged, durable cabinet construction stands up to heavy traffic exposure. This quality, sloped-top unit utilizes 20% outside air, has unit-mounted controls and offers a tamper-proof, bar stock discharge grille. The unit can operate as a closed-loop or earthcoupled system. Available with internal pumping systems for stand alone GS applications. Available in Sizes from 2 TONS to 3 1/2 TONS ClimateMaster also manufactures a complete line of Water-to-Water and Extended Range, Commercial and Residential Geo-Thermal Heat Pumps. Ask your local representative about quality ClimateMaster Heat Pump Products...Built for Life! / £