Inspection
Upon receipt of shipment at the job site, carefully check the shipment against the bill of lading. Make sure all units have been received. Inspect the carton or crating housing of each Rooftop Unit and inspect each unit for damage. Assure that the carrier makes proper notation of any shortages or damage on all copies of the freight bill and that he completes a Carrier Inspection Report. Concealed damage not discovered during unloading must be reported to the carrier within 15 days of receipt of shipment. **NOTE:** It is the responsibility of the purchaser to file all necessary claims with the carrier.

Storage
Upon the arrival of equipment at the job site, immediately store units in a clean, dry area. Do not stack units. **Do not remove equipment from pallets until equipment is required for installation.**

Unit Protection
Cover rooftop units on the job site. Cap the open ends of pipes. In areas where painting, plastering, roofing, or the spraying of fireproof material has not been completed, all due precautions must be taken to avoid physical damage to the units and contamination by foreign material. **Physical damage and contamination may prevent proper start-up and may result in costly equipment cleanup.**

Application
Field supplied balancing dampers in duct are recommended.

Recovery Wheel Mode
The Recovery Wheel mode is accomplished by two blowers providing continuous exhaust of stale indoor air and replacement by equal amount of outdoor air. Energy recovery is achieved by slowly rotating the energy recovery wheel within the cassette frame work. In winter, the ERV adsorbs heat and moisture from the exhaust air stream during one half of a complete rotation and gives them back to the cold, drier intake air supply during the other half rotation. In summer, the process is automatically reversed. Heat and moisture are absorbed from incoming fresh air supply and transferred to the exhaust air stream. This process allows outdoor air ventilation rates to be increased by factors of three or more without additional energy penalty or increase in size of heating or air conditioning systems.

Rigging Unit For Lifting
1. Maximum weight 300-1200 lbs. See Physical Data Table.
2. Remove crating.
3. All panels must be in place for rigging.
4. Remove barometric exhaust hood from door marked filter access. Install barometric exhaust hood over exhaust blower outlet.
5. Forklift channels must be removed from the base of ERV.
6. Position unit and provide service access to ERV control access door and wheel.
7. Duct work should be installed into roof curb before installing ERV on curb.
8. Roof curb gasket must be applied to all top surfaces of the curb.
9. Position unit on roof curb and provide service access to ERV control access door and wheel.

⚠️ **CAUTION!** ⚠️
CAUTION! Danger of sharp metallic edges. Can cause injury. Take care when servicing unit to avoid accidental contact with sharp edges.

⚠️ **WARNING!** ⚠️
WARNING! Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

⚠️ **WARNING!** ⚠️
WARNING! To avoid equipment damage, do not use these units as a source of heat during the construction process. The mechanical components and filters used in these units will quickly become clogged with construction dirt and debris which may cause system damage.

⚠️ **WARNING!** ⚠️
WARNING! The installation of water-source heat pumps and all associated components, parts, and accessories which make up the installation shall be in accordance with the regulations of ALL authorities having jurisdiction and MUST conform to all applicable codes. It is the responsibility of the installing contractor to determine and comply with ALL applicable codes, regulations and ANSI/NFPA No. 70.
Installation

Fresh Air Hood Assembly (See Figure 1)

1. Secure hood sides (A and C) to Hood top (B) using the supplied #10 x ½ screws.
2. Secure filter channels (F and D) to hood sides using the supplied #10 x ½ screws.
3. Secure hood bottom (E) to the inside of the hood sides using the supplied #10 x ½ screws.
4. Slide the fresh air filter (H) into the tracks created by the front of the hood sides and the filter channels.
5. Secure the filter panel (G) to the hood sides. Slide the filter panel under the front flange of the hood top.
6. Install fresh air hood on ERV.
7. Install barometric exhaust hood over exhaust blower outlet.
8. Connect field duct connections to duct flanges on back of ERV. Seal duct connections.
9. Remove ERV control access panel to connect field wiring.
10. Route class II low voltage wire (3 conductor) from thermostat or energy management through small bushing in end panel of ERV. See wiring diagram.

 a. Thermostat (dependent) - connect in parallel at rooftop unit with “G”, “C” and "W". Then connect matching color at terminal 1, 2, and 3 respectively on ERV circuit board.

 b. Energy Management - provide +24 VAC to “1” and common, 24 VAC to “2” terminals on ERV circuit board.

 c. Thermostat (dedicated) - splice into +24 vac (blue wire) at (control circuit board) transformer run wire to “R” terminal. Then run another wire from “G” terminal to ERV (control circuit board) terminal block #1.

11. All electrical connections must conform to any local codes and current National Electric Codes (NEC) and Canadian Electric Codes (CEC). Refer closely to unit wiring diagram in unit and/or these instructions for proper wiring connections.
12. Refer to the unit nameplate for minimum circuit ampacity (MCA) and maximum overcurrent protection size (fuse).
13. Electrical data is listed on unit rating plate and motor name plates.
14. Connect line voltage power supply to ERV fuse block in control box of unit from disconnect switch. See wiring diagram.
15. Ground unit with a suitable ground connection either through unit supply wiring or an earth ground.

Note: Unit voltage entries must be sealed weather tight after wiring is complete.

CAUTION! Blower speed must be adjusted for the given external static pressure and airflow (CFM) requirements. If blower speed is not adjusted for conditions, possible motor over loading can occur.
pulley. Adjust motor sheave to correct blower RPM for CFM and external static pressure requirements. See charts in this instruction. Multiple pulley arrangements are available to meet the entire range.

17. Replace access panel onto the ERV unit and secure.

18. Restore power to unit.

19. Cleanup once unit is operating properly, caulk any open joints, holes or seams to make the units completely air and water tight.

20. Leave this instruction manual with owner or in an envelope to be kept near unit.

Operation (How It Works)
The unit contains an Energy Recovery Wheel (ERW) that is a new concept in rotary air-to-air heat exchangers. Designed as a packaged unit for ease of installation and maintenance, only the connection of electrical power is required to make the system operational.

When slowly rotating through counter flowing exhaust and fresh air streams the ERW adsorbs sensible heat and latent heat from the warmer air stream and transfer this total energy to the cooler air stream during the second half of its rotating cycle. Rotating at 50-60 revolutions per minute, the wheel provides constant flow of energy from warmer to cooler air stream. The large energy transfer surface and laminar flow through the wheel causes this constant flow of recovered energy to represent up to 85% of the difference in total energy contained within the two air streams.

Sensible and latent heat are the two components of total heat. Sensible heat is energy contained in dry air and latent heat is the energy contained within the moisture of the air. The latent heat load from the outdoor fresh air on an air conditioning system can often be two to three times that of the sensible heat load and in the winter it is a significant part of a humidification heat load.

During both the summer and winter, the ERW transfers moisture entirely in the vapor phase. This eliminates wet surfaces that retain dust and promote fungal growth as well as the need for a condensate pan and drain to carry water.

Because it is constantly rotating when in the air stream, the ERV is always being cleaned by air, first in one direction then the other. Because it is always dry, dust or other particles impinging on the surface during one half cycle, are readily removed during the next half cycle.

During the heating season, when outdoor air temperatures are below 15°F, it is recommended to use the (optional) low ambient kit (field installed).

Low Ambient Kit is appropriate for climates with limited HVAC system operation when outdoor temperatures are below 10°F.

The frost threshold is the outdoor temperature at which frost will begin to form on the ERW wheel. For Energy Recovery Ventilators, the frost threshold is typically below 10°F. Frost threshold is dependent on indoor temperature and humidify. The table shows how the frost threshold temperatures vary depending on indoor conditions.

<table>
<thead>
<tr>
<th>INDOOR RH AT 70°F</th>
<th>FROST THRESHOLD TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>0°F</td>
</tr>
<tr>
<td>30%</td>
<td>5°F</td>
</tr>
<tr>
<td>40%</td>
<td>10°F</td>
</tr>
</tbody>
</table>

Because Energy Recovery Ventilators have a low frost threshold, frost control options are not necessary in many climates. Where outdoor temperatures may drop below the frost threshold during the ERV operational hours, exhaust only frost control option is available.

Low Ambient Kit (Optional)
Low Ambient Kit turns off the supply blower when outdoor temperatures fall below the frost threshold. The exhaust only thermostat set points are field adjustable. Supply fan operation is automatically restored when the exhaust air temperature rises above the thermostat set point. Provisions for introducing make-up air into the building when the supply blower is off to avoid depressurization should be considered.

Recovery Wheel Mode
On a thermostat call for blower operation in heating, cooling or continuous blower, the ERW will rotate between fresh air and exhaust air streams. Both the fresh air and exhaust air blowers will also be operating to overcome the air resistance of the ERV.

System Check
1. Disconnect main power.
2. Turn to “Cont” for blower operation on thermostat controlled models.
3. Restore power to unit. Observe ERV wheel rotation and both fresh air and exhaust air blowers will operating.

NOTE: If Low ambient kit is used the jumper between TB37-5 & TB37-6 should be removed. Also if system check out is being conducted at low ambient temperatures, technician should be aware that this kit can cause system not to operate.

4. Verify that the ERV (3) three phase blower motors are phased sequentially ensuring correct rotation and operation.
 a. Disconnect power.
 b. Reverse any two field power leads to the ERV.
 c. Reapply power.

5. Verify that both blower motors are operating under their full load AMP rating (FLA). The FLA can be found on each motor and the unit nameplate.

A. Return Damper Settings
 Manually adjust position of field installed dampers to balance air flow.

B. Air Flow / Blower Speed Adjustment
 Blower speed selection is accomplished by changing the sheave setting on both fresh air and exhaust air blowers. To set ERV for the required air flow (CFM), the external static pressure applied to the ERV (duct static) must be known. See the CFM vs External Static Pressure chart for the appropriate unit to determine the correct blower RPM for the specified CFM and External Static Pressure.

After blower speed adjustments have been made. Ensure that when the belt is replaced it is tensioned correctly. The motor mounting plate can be adjusted to tension the belt. If using a belt tension checker, adjust the span to the appropriate setting and check the belt deflection force. The belt deflection force should be between 5-8 lbs or the lowest tension at which the belt will not slip under peak load conditions.

1. Disconnect main power to unit before making adjustment to economizer and/or ERV unit.
2. Replace ERV control access cover.
3. Set thermostat to normal operating position.
4. Restore power to unit.

Maintenance
1. All motors use pre-lubricated sealed bearings; no further lubrication is necessary.
the wheel while the third segment is installed. Rotate the wheel 180° again to install the fourth segment opposite the third. Repeat this sequence with the remaining four segments.

Pulley Kit Installation

The units are shipped from the factory at the low static setting. Pulley kits are available for the medium and high static settings. To install a pulley kit.

1. Check content of pulley kit, if pulley kit contains:
 a. An adjustable sheave and a fixed pitch pulley then remove belt and both motor and blower pulley
 b. An adjustable sheave then remove the motor pulley.
 c. A fixed pitch pulley then remove the blower pulley.
2. Replace pulley(s) with the pulley(s) from pulley kit. Make sure each pulley is installed with a key. Tighten the set screw on the pulley(s) to 100 in lb.
3. Install the belt that came with the pulley kit. Tension belt as explained in the blower speed adjustment section.
4. Check the speed of the blower. Adjust the motor sheave to increase or decrease the speed of the blower. See blower adjustment section.
Features and Notes:
1. Stand alone design allows higher levels of outdoor air to be introduced into the a/c space.
2. Static test ports provided to verify intake and exhaust CFM.
3. Balancing damper(s) is field provided when connected to ductwork. System will not operate properly without balancing damper.
4. Roof curbs are available for the ERV’s.
5. See blower performance charts for airflow at various E.S.P.
6. Filter rack with 2” pleated filters included.

<table>
<thead>
<tr>
<th>ERV Roof Curbs</th>
<th>Series</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>ACURBEVF</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>ACURBEVFC</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>ACURBEVFD</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>ACURBEVFE</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>ACURBEVFF</td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>ACURBEVFG</td>
<td></td>
</tr>
</tbody>
</table>

ERV Data and Dimensional Data

<table>
<thead>
<tr>
<th>ERV Series</th>
<th>CFM Range</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>300-1100</td>
<td>44.75</td>
<td>32.13</td>
<td>33.50</td>
<td>11.00</td>
<td>27.00</td>
<td>4.00</td>
<td>4.25</td>
<td>2.88</td>
<td>2.50</td>
<td>20.75</td>
<td>14.38</td>
</tr>
<tr>
<td>SC</td>
<td>1200-2000</td>
<td>54.38</td>
<td>37.25</td>
<td>37.50</td>
<td>12.00</td>
<td>30.00</td>
<td>5.87</td>
<td>5.13</td>
<td>4.06</td>
<td>1.63</td>
<td>20.75</td>
<td>17.50</td>
</tr>
<tr>
<td>SD</td>
<td>1200-2800</td>
<td>52.25</td>
<td>42.63</td>
<td>43.56</td>
<td>14.00</td>
<td>32.00</td>
<td>8.69</td>
<td>5.25</td>
<td>4.25</td>
<td>2.88</td>
<td>20.75</td>
<td>25.50</td>
</tr>
<tr>
<td>SE</td>
<td>2000-3600</td>
<td>60.00</td>
<td>46.69</td>
<td>57.37</td>
<td>16.50</td>
<td>39.50</td>
<td>12.00</td>
<td>5.50</td>
<td>4.05</td>
<td>5.88</td>
<td>20.75</td>
<td>25.50</td>
</tr>
<tr>
<td>SF</td>
<td>3000-4600</td>
<td>60.00</td>
<td>52.69</td>
<td>57.37</td>
<td>16.50</td>
<td>39.50</td>
<td>12.00</td>
<td>8.69</td>
<td>5.50</td>
<td>5.88</td>
<td>20.75</td>
<td>28.06</td>
</tr>
<tr>
<td>SG</td>
<td>4600-6200</td>
<td>72.00</td>
<td>70.88</td>
<td>63.63</td>
<td>19.50</td>
<td>39.50</td>
<td>17.53</td>
<td>14.50</td>
<td>8.70</td>
<td>6.60</td>
<td>20.75</td>
<td>37.75</td>
</tr>
</tbody>
</table>
Notes:
1. Remove jumper to install field optional low ambient switch.
2. Selective voltage terminals for proper unit voltage.
3. Optional low ambient switch.
4. Optional motorized intake damper.
5. Optional Stop, Start and Jog Control.
6. For energy management systems connect +24v to “G” and common 24v to “C”.
Notes:
1. Remove jumper to install field optional low ambient switch.
2. Step-down transformer assembly for 460/575 volt units.
3. Selective voltage terminals for proper unit voltage.
4. Optional low ambient switch.
5. Optional motorized intake damper.
6. Optional Stop, Start and Jog Control.
7. For energy management systems connect +24v to “G” and common 24v to “C”.

WIRE COLOR

- BK Black
- BL Blue
- GR Green
- GY Gray
- OR Orange
- PK Pink
- RD Red
- WH White
- YL Yellow

COMPONENT CODE

- A131 Fixed Relay Board
- B26 Motor, Exhaust Air
- B27 Motor, Fresh Air
- B28 Motor, Desiccant Wheel
- B30 Motor, Damper (Optional)
- C23 Capacitor, Wheel Motor
- DL43 Delay, Cycle Timer (Optional)
- F29 Fuse
- J34 Jack, Cycle Control (Optional)
- J34 Jack, Cycle Control Harness (Optional)
- J40 Jack, Cycle (Optional)
- J46 Jack, Control Box (Fresh Air)
- J50 Jack, Control Box (Wheel)
- J51 Jack, Control Box (Exhaust Air)
- J56 Jack, Control Box (Damper)
- J748 Jack, Fresh Air Motor Harness
- J750 Jack, Wheel Motor Harness
- J751 Jack, Exhaust Air Motor Harness
- J752 Jack, Transformer (High Voltage)
- J760 Jack, Damper Motor Harness
- J94 Relay, On/Off (Optional)
- K163 Contact, Exhaust Air Motor
- K164 Contact, Fresh Air Motor
- P34 Plug, Cycle Control Harness (Optional)
- P40 Plug, Wheel Cycle (Optional)
- P48 Plug, Fresh Air Motor Harness
- P50 Plug, Wheel Motor Harness
- P51 Plug, Exhaust Air Motor Harness
- P56 Plug, Damper Motor Harness
- P58 Plug, Fresh Air Motor
- P59 Plug, Wheel Motor
- P51 Plug, Exhaust Air Motor
- P52 Plug, Transformer (High Voltage)
- P53 Plug, Damper Motor
- P54 Plug, Transformer (High Voltage)
- P61 Switch, Ambient Override (Optional)
- P63 Switch, Door
- P65 Switch, Ambient Override (Optional)
- T27 Transformer, Control
- T28 Transformer, Step-down (Optional)

POWER SUPPLY
208/230-3-60
460-3-60
575-3-60
Notes:
1. Remove jumper to install field optional low ambient switch.
2. Selective voltage terminals for proper unit voltage.
3. Optional low ambient switch.
4. Optional motorized intake damper.
5. Optional Stop, Start and Jog Control.
6. For energy management systems connect +24v to “G” and common 24v to “C”.

Desiccant Wheel for Rooftop Unit
208-230V (1 PH)

SB-C
ERV UNIT WIRING DIAGRAM

Notes:
1. Remove jumper to install field optional low ambient switch.
2. Step-down transformer assembly for 460/575 volt units.
3. Selective voltage terminals for proper unit voltage.
4. Optional low ambient switch.
5. Optional motorized intake damper.
6. Optional Stop, Start and Jog Control.
7. For energy management systems connect +24v to “G” and common 24v to “C”.

Desiccant Wheel for Rooftop Unit
208-230/460/575V (3 PH)

SB-G
Blower RPM for SB

SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (1.5HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>500</td>
<td>N/A</td>
<td>1015</td>
</tr>
<tr>
<td>700</td>
<td>990</td>
<td>1190</td>
</tr>
<tr>
<td>900</td>
<td>1150</td>
<td>1310</td>
</tr>
<tr>
<td>1100</td>
<td>1305</td>
<td>1440</td>
</tr>
</tbody>
</table>

EXHAUST

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (1.5HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>500</td>
<td>N/A</td>
<td>1145</td>
</tr>
<tr>
<td>700</td>
<td>1140</td>
<td>1270</td>
</tr>
<tr>
<td>900</td>
<td>1320</td>
<td>1435</td>
</tr>
<tr>
<td>1100</td>
<td>1495</td>
<td>1580</td>
</tr>
</tbody>
</table>

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions.
3. Blower RPMs are for reference only.

Blower RPM for SC

SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (2HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1065</td>
<td>1285</td>
</tr>
<tr>
<td>1400</td>
<td>1140</td>
<td>1330</td>
</tr>
<tr>
<td>1600</td>
<td>1290</td>
<td>1400</td>
</tr>
<tr>
<td>1800</td>
<td>1395</td>
<td>1470</td>
</tr>
<tr>
<td>2000</td>
<td>1460</td>
<td>1530</td>
</tr>
</tbody>
</table>

EXHAUST

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (2HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1175</td>
<td>1290</td>
</tr>
<tr>
<td>1400</td>
<td>1245</td>
<td>1425</td>
</tr>
<tr>
<td>1600</td>
<td>1400</td>
<td>1505</td>
</tr>
<tr>
<td>1800</td>
<td>1495</td>
<td>1680</td>
</tr>
<tr>
<td>2000</td>
<td>1645</td>
<td>1730</td>
</tr>
</tbody>
</table>

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions.
3. Blower RPMs are for reference only.

RPM Range
- **Low**: 1000-1300 (Standard Unit)
- **Medium**: 1300-1700 (Optional Kit)
- **High**: 1750-2200 (Optional Kit)
Blower RPM for SD

SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>N/A</td>
<td>955</td>
</tr>
<tr>
<td>1600</td>
<td>N/A</td>
<td>1065</td>
</tr>
<tr>
<td>2000</td>
<td>1060</td>
<td>1200</td>
</tr>
<tr>
<td>2400</td>
<td>1190</td>
<td>1335</td>
</tr>
<tr>
<td>2800</td>
<td>1300</td>
<td>1460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1600</td>
<td>N/A</td>
<td>1020</td>
</tr>
<tr>
<td>2000</td>
<td>1015</td>
<td>1150</td>
</tr>
<tr>
<td>2400</td>
<td>1140</td>
<td>1285</td>
</tr>
<tr>
<td>2800</td>
<td>1280</td>
<td>1345</td>
</tr>
</tbody>
</table>

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions
3. Blower RPMs are for reference only

EXHAUST

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>815</td>
<td>925</td>
</tr>
<tr>
<td>2400</td>
<td>920</td>
<td>1060</td>
</tr>
<tr>
<td>2800</td>
<td>1010</td>
<td>1140</td>
</tr>
<tr>
<td>3200</td>
<td>1125</td>
<td>1235</td>
</tr>
<tr>
<td>3600</td>
<td>1225</td>
<td>1375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>755</td>
<td>890</td>
</tr>
<tr>
<td>2400</td>
<td>985</td>
<td>1035</td>
</tr>
<tr>
<td>2800</td>
<td>1020</td>
<td>1115</td>
</tr>
<tr>
<td>3200</td>
<td>1105</td>
<td>1200</td>
</tr>
<tr>
<td>3600</td>
<td>1155</td>
<td>1265</td>
</tr>
</tbody>
</table>

Blower RPM for SE

SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>815</td>
<td>925</td>
</tr>
<tr>
<td>2400</td>
<td>920</td>
<td>1060</td>
</tr>
<tr>
<td>2800</td>
<td>1010</td>
<td>1140</td>
</tr>
<tr>
<td>3200</td>
<td>1125</td>
<td>1235</td>
</tr>
<tr>
<td>3600</td>
<td>1225</td>
<td>1375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>755</td>
<td>890</td>
</tr>
<tr>
<td>2400</td>
<td>985</td>
<td>1035</td>
</tr>
<tr>
<td>2800</td>
<td>1020</td>
<td>1115</td>
</tr>
<tr>
<td>3200</td>
<td>1105</td>
<td>1200</td>
</tr>
<tr>
<td>3600</td>
<td>1155</td>
<td>1265</td>
</tr>
</tbody>
</table>

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions
3. Blower RPMs are for reference only

EXHAUST

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>755</td>
<td>890</td>
</tr>
<tr>
<td>2400</td>
<td>985</td>
<td>1035</td>
</tr>
<tr>
<td>2800</td>
<td>1020</td>
<td>1115</td>
</tr>
<tr>
<td>3200</td>
<td>1105</td>
<td>1200</td>
</tr>
<tr>
<td>3600</td>
<td>1155</td>
<td>1265</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (3HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>755</td>
<td>890</td>
</tr>
<tr>
<td>2400</td>
<td>985</td>
<td>1035</td>
</tr>
<tr>
<td>2800</td>
<td>1020</td>
<td>1115</td>
</tr>
<tr>
<td>3200</td>
<td>1105</td>
<td>1200</td>
</tr>
<tr>
<td>3600</td>
<td>1155</td>
<td>1265</td>
</tr>
</tbody>
</table>

RPM Range

- **Low**: 700-1025
- **Medium**: 1030-1305
- **High**: 1325-1575

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions
3. Blower RPMs are for reference only
Blower RPM for SF

SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (5HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td>965</td>
</tr>
<tr>
<td>3400</td>
<td></td>
<td>1035</td>
</tr>
<tr>
<td>3800</td>
<td></td>
<td>1120</td>
</tr>
<tr>
<td>4200</td>
<td></td>
<td>1215</td>
</tr>
<tr>
<td>4600</td>
<td></td>
<td>1300</td>
</tr>
</tbody>
</table>

EXHAUST

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (5HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td>1010</td>
</tr>
<tr>
<td>3400</td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td>3800</td>
<td></td>
<td>1185</td>
</tr>
<tr>
<td>4200</td>
<td></td>
<td>1240</td>
</tr>
<tr>
<td>4600</td>
<td></td>
<td>1345</td>
</tr>
</tbody>
</table>

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions
3. Blower RPMs are for reference only

Blower RPM for SG

SUPPLY

<table>
<thead>
<tr>
<th>CFM</th>
<th>Mist Eliminator Filter in Intake Hood (5HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4600</td>
<td></td>
<td>795</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>855</td>
</tr>
<tr>
<td>5400</td>
<td></td>
<td>880</td>
</tr>
<tr>
<td>5800</td>
<td></td>
<td>915</td>
</tr>
<tr>
<td>6200</td>
<td></td>
<td>985</td>
</tr>
</tbody>
</table>

EXHAUST

<table>
<thead>
<tr>
<th>CFM</th>
<th>Barometric Hood, 2" Pleated Filters (5HP)</th>
<th>External Static Pressure (in water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4600</td>
<td></td>
<td>705</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>825</td>
</tr>
<tr>
<td>5400</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>5800</td>
<td></td>
<td>935</td>
</tr>
<tr>
<td>6200</td>
<td></td>
<td>985</td>
</tr>
</tbody>
</table>

Notes:
1. Drive losses included in the above tables.
2. Performance can vary depending on ambient conditions
3. Blower RPMs are for reference only
Revision History

<table>
<thead>
<tr>
<th>Date:</th>
<th>Item:</th>
<th>Action:</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/15/16</td>
<td>Text</td>
<td>Updated</td>
</tr>
<tr>
<td>04/04/14</td>
<td>Logos - page 1 & 16</td>
<td>Updated</td>
</tr>
<tr>
<td>11/21/13</td>
<td>Created</td>
<td></td>
</tr>
</tbody>
</table>

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. For the latest version of this document go to climatemaster.com.

© ClimateMaster, Inc. 2013