INSTALLATION INSTRUCTIONS

RHCL: COMMERCIAL AIR HANDLER WITH VARIABLE FREQUENCY DRIVE (VFD) **R-410A REFRIGERANT** 2-STAGE AIR-FLOW

 \mathbf{A} Ü^8[*} $\tilde{\mathbf{a}}$ ^Ác@āÁr^{ à[|ÁserÁse}ÁsejÁsjåä8æænā[}Á;ÁQ][|cæ) cÂÚæ^cÂQ2-{|{ æmā[}}Â

DO NOT DESTROY

PLEASE READ CAREFULLY AND KEEP IN A SAFE PLACE FOR FUTURE REFEREN

WARNING

THESE INSTRUCTIONS ARE INTENDED AS AN AID TO QUALIFIED. LICENSED SERVICE PERSONNEL FOR PORPER INSTALLATION. ADJUSTMENT AND OPERATION OF THIS UNIT. READ THESE INSTRUCTIONS THOROUGHLY BEFORE ATTEMPTING INSTALLA-TION OR OPERATION. FAILURE TO FOLLOW THESE INSTRUCTIONS MAY RESULT IN IMPROPER INSTALLATION, ADJUSTMENT, SER-VICE OR MAINTEMANCE POSSIBLY RESULTING IN FIRE, ELECTRI-CAL SHOCK, PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

TABLE OF CONTENTS

1.0 Safety Information	
2.0 General Information	
2.1 Important Information About Efficiency & Indoor Air Quality	6
2.2 Checking Product Received	6
2.3 Model Number Nomenclature	6
2.4 Available Models	
2.5 Physical Dimensions - Inches [mm]	7
2.6 Physical Data	9
2.7 Mayor Components	
2.8 Importance Of Proper Indoor/Outdoor Match-Ups	11
2.9 Importance Of A Quality Installation	11
3.0 Installation	12
3.1 Tools & Refrigerant	12
3.1.1 Tools Required For Installing And Servicing R-410A Models	12
3.1.2 Specifications of R-410A	12
3.1.3 Quick-Reference Guide for R-410A	
3.2 Applications & Orientation	13
3.2.1 Horizontal Discharge	13
3.2.2 Vertical Up Discharge	13
3.2.3 Applications Requiring Electric Heat	14
3.2.4 Suspending Unit	
3.2.5 Installation in an Unconditioned Space	14
3.2.6 Installation in Corrosive Environments	14
3.3 Auxiliary Overflow Pan	15
3.4 Clearances	
3.5 Ductwork	15
3.6 Return Air Filters	15
3.0 Neturn All 1 liters	10
3.7 Refrigerant Line Connections & Charging	
	16
3.7 Refrigerant Line Connections & Charging	16 16
Refrigerant Line Connections & Charging 3.7.1 Preparation	16 16 16
3.7 Refrigerant Line Connections & Charging	16 16 16 17
3.7 Refrigerant Line Connections & Charging	16 16 16 17 17
3.7 Refrigerant Line Connections & Charging	16 16 16 17 17
3.7 Refrigerant Line Connections & Charging	16 16 17 17 18 18
3.7 Refrigerant Line Connections & Charging 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing	16 16 17 17 18 18
3.7 Refrigerant Line Connections & Charging 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation	16 16 17 17 18 18 18
3.7 Refrigerant Line Connections & Charging 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging	16 16 17 17 18 18 18 18
3.7 Refrigerant Line Connections & Charging 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging 3.7.8 Refrigerant Charging 3.8 TXV Sensing Bulb Attachment	16 16 17 17 18 18 18 18 19
3.7 Refrigerant Line Connections & Charging 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging 3.7.8 Refrigerant Charging 3.9 Condensate Drain	16 16 17 17 18 18 18 18 19
3.7 Refrigerant Line Connections & Charging 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging 3.8 TXV Sensing Bulb Attachment 3.9 Condensate Drain 3.10 Thermostat	16 16 17 17 18 18 18 19 19 20
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines. 3.7.4 Liquid Line Filter Drier. 3.7.5 Brazing. 3.7.6 Leak Testing. 3.7.7 Evacuation. 3.7.8 Refrigerant Charging. 3.8 TXV Sensing Bulb Attachment. 3.9 Condensate Drain. 3.10 Thermostat. 3.11 Electrical Wiring.	16 16 17 17 18 18 18 18 19 20 20
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging 3.8 TXV Sensing Bulb Attachment 3.9 Condensate Drain 3.10 Thermostat 3.11 Electrical Wiring 3.11.1 Power Wiring	16 16 17 17 18 18 18 19 19 20 20
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation	16 16 17 17 18 18 18 19 20 20 20 20
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation	16 16 17 17 18 18 18 19 20 20 20 20 20
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines. 3.7.4 Liquid Line Filter Drier. 3.7.5 Brazing. 3.7.6 Leak Testing. 3.7.7 Evacuation. 3.7.8 Refrigerant Charging. 3.8 TXV Sensing Bulb Attachment. 3.9 Condensate Drain. 3.10 Thermostat. 3.11 Electrical Wiring. 3.11.1 Power Wiring. 3.11.1.1 No-Heat Applications. 3.11.1.2 Electric Heat Applications. 3.11.2 Grounding.	16 16 17 17 18 18 18 19 20 20 20 20 21
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines. 3.7.4 Liquid Line Filter Drier. 3.7.5 Brazing. 3.7.6 Leak Testing. 3.7.7 Evacuation. 3.7.8 Refrigerant Charging. 3.8 TXV Sensing Bulb Attachment. 3.9 Condensate Drain. 3.10 Thermostat. 3.11 Electrical Wiring. 3.11.1 Power Wiring. 3.11.1.2 Electric Heat Applications. 3.11.2 Grounding. 3.11.3 Electrical Data – Without Electric Heat. 3.11.4 Electrical Data – With Electric Heat. 3.11.5 Copper Wire Size	16 16 17 17 18 18 18 19 20 20 20 20 21 21 21
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging 3.8 TXV Sensing Bulb Attachment 3.9 Condensate Drain 3.10 Thermostat 3.11 Electrical Wiring 3.11.1 Power Wiring 3.11.1.2 Electric Heat Applications 3.11.2 Grounding 3.11.3 Electrical Data – Without Electric Heat 3.11.4 Electrical Data – With Electric Heat	16 16 17 17 18 18 18 19 20 20 20 20 21 21 21
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines. 3.7.4 Liquid Line Filter Drier. 3.7.5 Brazing. 3.7.6 Leak Testing. 3.7.7 Evacuation. 3.7.8 Refrigerant Charging. 3.8 TXV Sensing Bulb Attachment. 3.9 Condensate Drain. 3.10 Thermostat. 3.11 Electrical Wiring. 3.11.1 Power Wiring. 3.11.1.2 Electric Heat Applications. 3.11.2 Grounding. 3.11.3 Electrical Data – Without Electric Heat. 3.11.4 Electrical Data – With Electric Heat. 3.11.5 Copper Wire Size	16 16 17 18 18 18 19 20 20 20 20 21 21 22
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines 3.7.4 Liquid Line Filter Drier 3.7.5 Brazing 3.7.6 Leak Testing 3.7.7 Evacuation 3.7.8 Refrigerant Charging 3.8 TXV Sensing Bulb Attachment 3.9 Condensate Drain 3.10 Thermostat 3.11 Electrical Wiring 3.11.1 Power Wiring 3.11.1.2 Electric Heat Applications 3.11.3 Electrical Data – Without Electric Heat 3.11.4 Electrical Data – With Electric Heat 3.11.5 Copper Wire Size 3.11.6 Electric Heater Kit Identification Label	16 16 17 18 18 18 19 20 20 20 21 21 22 22
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines. 3.7.4 Liquid Line Filter Drier. 3.7.5 Brazing. 3.7.6 Leak Testing. 3.7.7 Evacuation. 3.7.8 Refrigerant Charging. 3.8 TXV Sensing Bulb Attachment. 3.9 Condensate Drain. 3.10 Thermostat. 3.11 Electrical Wiring. 3.11.1 Power Wiring. 3.11.1.1 No-Heat Applications. 3.11.2 Electric Heat Applications. 3.11.3 Electrical Data – Without Electric Heat. 3.11.4 Electrical Data – With Electric Heat. 3.11.5 Copper Wire Size 3.11.6 Electric Heater Kit Identification Label. 3.11.7 Control Wiring. 3.11.7.1 No-Heat Applications. 3.11.7.2 Electric Heat Applications.	16 16 17 17 18 18 18 19 20 20 20 21 21 22 22 22 22
3.7 Refrigerant Line Connections & Charging. 3.7.1 Preparation. 3.7.2 Configuring Air-Handler For A Single Or Dual Refrigerant Circuits. 3.7.3 Refrigerant Lines. 3.7.4 Liquid Line Filter Drier. 3.7.5 Brazing. 3.7.6 Leak Testing. 3.7.7 Evacuation. 3.7.8 Refrigerant Charging. 3.8 TXV Sensing Bulb Attachment. 3.9 Condensate Drain. 3.10 Thermostat. 3.11 Electrical Wiring. 3.11.1 Power Wiring. 3.11.1.1 No-Heat Applications. 3.11.2 Electric Heat Applications. 3.11.3 Electrical Data – Without Electric Heat. 3.11.4 Electrical Data – With Electric Heat. 3.11.5 Copper Wire Size. 3.11.6 Electric Heater Kit Identification Label. 3.11.7 Control Wiring. 3.11.7.1 No-Heat Applications.	16 16 17 17 18 18 18 19 20 20 20 20 21 21 21 22 22 22 22 22

TABLE OF CONTENTS (continued)

	3.12 Air-flow	24
	3.12.1 Drive Package Data	25
	3.12.2 Air-Flow Performance Data	26
	3.12.3 Component Air-Resistance Data	27
	3.12.4 Selecting The Proper Blower Drive & Motor Sheave Setting	27
	3.12.5 Field Supplied Blower Drives	27
	3.12.6 Adjusting The Variable Pitch Motor Sheave	27
	3.12.7 Drive Belt Alignment & Adjustment	28
4.0	Start-Up	28
	4.1 Pre-Start Checklist	28
	4.2 System Start-Up & Operational Check-Out	28
	4.3 Checking Indoor Air-Flow Rate	29
	4.3.1 Estimating Air-Flow Rate Using External Static Pressure	29
	4.3.2 Estimating Air-Flow Rate Using Electric Heat Temperature Rise	29
	4.3.3 Correcting Electric Heat Kw For Voltage	29
	4.3.4 Calculating Electric Heat Capacity In Btu	29
	4.4 Checking Refrigerant Charge	29
	4.5 Sequence Of Operation	30
	4.5.1 Cooling & Heat Pump Heating Modes	30
	4.5.2 Electric Heat Mode	
	4.5.3 Supplemental Heating During The Heat Pump Heating & Defrost Modes	30
	4.5.4 Emergency Heat (Heat Pump)	30
	4.5.5 Thermostat Fan Setting	30
5.0	Field Installed Accessories & Kits	31
	5.1 Electric Resistance Heater Kits	31
	5.2 Mixing Box Kits	32
	5.3 Discharge Plenum, Discharge Grille, & Inlet Grille Kits	
	5.4 Filter Frame Kits	
	5.5 Hot Water & Steam Coils	36
6.0	Maintenance	
	6.1Air-Filters	
	6.2 Coil, Drain Pan, Drain Line	
	6.3 Blower Lubrication & Cleaning	37
	6.4 Blower Shaft Bearings, Bearing Collar Set Screws, Blower Wheel, Sheaves, &	
	Blower Drive Belt(S)	
	6.5 Motor Replacement	
	6.6 Replacement Parts	
	Diagnostics	
o r	Wiring Diagram	-20

▲ WARNING

Disconnect all power to unit before installing or servicing. More than one disconnect switch may be required to de-energize the equipment. Hazardous voltage can cause severe personal injury or death.

▲ WARNING

If removal of the blower assembly is required, all disconnect switches supplying power to the equipment must be de-energized and locked (if not in sight of unit) so the field power wires can be safely removed from the blower assembly. Failure to do so can cause electrical shock resulting in personal injury or death.

▲ WARNING

Because of possible damage to equipment or personal injury, installation, service, and maintenance should be performed by a trained, qualified service personnel. Never operate the unit with the access panels removed.

AWARNING

Carbon Monoxide (CO) Poisoning Can Cause Severe Injury or Death.

Carbon Monoxide from the exhaust of motor vehicles and other fuel burning devices can be drawn into the living space by the operation of the central heating and air conditioning system.

Exhaust from motor vehicles, generators, garden tractors, mowers, portable heaters, charcoal and gas grills, gasoline powered tools, and outdoor camping equipment contains carbon monoxide, a poisonous gas that can kill you. You cannot see it, smell it, or taste it.

- Do NOT operate an automobile or any engine in a garage for more than the few seconds it takes to enter or exit the garage.
- · Do NOT operate any fuel-burning device in an enclosed or partly enclosed space, or near building windows, doors or air intakes.

The U.S. Consumer Product Safety Commission (CPSC) and Health Canada recommend the installation of UL or CSA certified Carbon Monoxide Alarm(s) in every home.

1.0 SAFETY INFORMATION

▲ WARNING

Duct leaks can create an unbalanced system and draw pollutants such as dirt, dust, fumes and odors into the building causing property damage. Fumes and odors from toxic, volatile or flammable chemicals, as well as automobile exhaust and carbon monoxide (CO), can be drawn into the occupied space through leaking ducts and unbalanced duct systems causing personal injury or death (see Figure 1).

- · If air-moving equipment or ductwork is located in garages or off-garage storage areas - all joints, seams, and openings in the equipment and duct must be sealed to limit the migration of toxic fumes and odors including carbon monoxide from migrating into the living space.
- If air-moving equipment or ductwork is located in spaces containing fuel burning appliances such as water heaters or boilers - all joints, seams, and openings in the equipment and duct must also be sealed to prevent depressurization of the space and possible migration of combustion byproducts including carbon monoxide into the occupied space.

▲ WARNING

These instructions are intended as an aid to qualified, licensed service personnel for proper installation, adjustment and operation of this unit. Read these instructions thoroughly before attempting installation or operation. Failure to follow these instructions may result in improper installation, adjustment, service or maintenance possibly resulting in fire, electrical shock, property damage, personal injury or death.

WARNING (SEE SECTION 3.11.3: GROUNDING)

The unit must be permanently grounded. Failure to do so can result in electrical shock causing personal injury or death.

WARNING (SEE SECTION 3.5: DUCTWORK)

Do not, under any circumstances, connect return ductwork to any other heat producing device such as fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, personal injury or property damage.

WARNING (SEE SECTION 3.6: AIR FILTER)

Do not operate the system without filters. A portion of the dust entrained in the air may temporarily lodge in the duct runs and at the supply registers. Any circulated dust particles could be heated and charred by contact with the heating elements. This residue could soil ceilings, walls, drapes, carpets and other articles in the building.

Soot damage may occur even with filters in place when certain types of candles, oil lamps or standing pilots are burned.

WARNING

The first 36 inches of supply air plenum and ductwork must be constructed of sheet metal with no openings, registers or flexible air ducts located in it as required by NFPA 90B if an electric heater accessory is installed. If flexible supply air ducts are used they may be located only in the vertical walls of a rectangular plenum, a minimum of 6 inches from the solid bottom.

CAUTION (SEE SECTION 3.3: AUXILIARY OVERFLOW PAN)

In compliance with recognized codes, an auxiliary drain pan must be installed under all equipment containing evaporator coils that are located in any area of a structure where damage to the building or building contents may occur as a result of an overflow of the coil drain pan or a stoppage in the primary condensate drain piping.

WARNING

PROPOSITION 65: This appliance contains fiberglass insulation. Respirable particles of fiberglass are known to the State of California to cause cancer.

All manufacturer products meet current Federal 0SHA Guidelines for safety. California Proposition 65 warnings are required for certain products, which are not covered by the 0SHA standards.

California's Proposition 65 requires warnings for products sold in California that contain or produce any of over 600 listed chemicals known to the State of California to cause cancer or birth defects such as fiberglass insulation, lead in brass, and combustion products from natural gas.

All "new equipment" shipped for sale in California will have labels stating that the product contains and/or produces Proposition 65 chemicals. Although we have not changed our processes, having the same label on all our products facilitates manufacturing and shipping. We cannot always know "when, or if" products will be sold in the California market.

You may receive inquiries from customers about chemicals found in, or produced by, some of our heating and air-conditioning equipment, or found in natural gas used with some of our products. Listed below are those chemicals and substances commonly associated with similar equipment in our industry and other manufacturers.

- · Glass Wool (Fiberglass) Insulation
- · Carbon Monoxide (CO)
- Formaldehyde
- Benzene

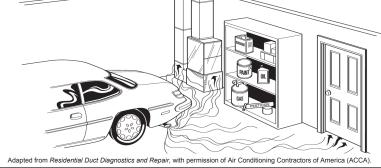
More details are available at the websites for OSHA (Occupational Safety and Health Administration), at www.osha.gov and the State of California's OEHHA (Office of Environmental Health Hazard Assessment), at www.oehha.org. Consumer education is important since the chemicals and substances on the list are found in our daily lives. Most consumers are aware that products present safety and health risks, when improperly used, handled and maintained.

NOTICE

When used in cooling applications, excessive sweating may occur when unit is installed in an unconditioned space. This can result in property damage.

A NOTICE

Improper installation, or installation not made in accordance with the Underwriters Laboratory (UL) certification or these instructions, can result in unsatisfactory operation and/or dangerous conditions and are not covered by the unit warranty.


M NOTICE

Use of this air-handler during construction is not recommended. If operation during construction is absolutely required, the following temporary installation requirements must be followed:

Installation must comply with all Installation Instructions in this manual including the following items:

- · Properly sized power supply and circuit breaker/fuse
- Air-handler operating under thermostatic control;
- · Return air duct sealed to the air-handler;
- · Air filters must be in place;
- · Correct air-flow setting for application
- Clean air-handler, duct work, and components including coil upon completion of the construction process and verify proper air-handler operating conditions according as stated in this instruction manual.
- NOTE: Electric strip heater elements tend to emit a burning odor for a few days if dust has accumulated during construction. Heater elements are easily damaged. Take great care when cleaning them. Low pressure compressed air is recommended for cleaning elements.

FIGURE 1 MIGRATION OF DANGEROUS SUBSTANCES, FUMES, AND ODORS INTO LIVING SPACES

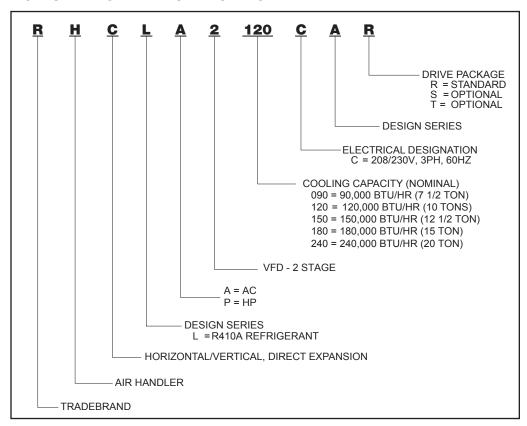
▲ WARNING

Duct leaks can create an unbalanced system and draw pollutants such as dirt, dust, fumes and odors into the building causing property damage. Fumes and odors from toxic, volatile or flammable chemicals, as well as automobile exhaust and carbon monoxide (CO), can be drawn into the living space through leaking ducts and unbalanced duct systems causing personal injury or death (see Figure 1).

- If air-moving equipment or ductwork is located in garages or off-garage storage areas all joints, seams, and openings in the equipment and duct must be sealed to limit the migration of toxic fumes and odors including carbon monoxide from migrating into the occupied space.
- If air-moving equipment or ductwork is located in spaces containing fuel burning appliances such as water heaters or boilers – all joints, seams, and openings in the equipment and duct must also be sealed to prevent depressurization of the space and possible migration of combustion byproducts including carbon monoxide into the occupied space.

í

2.0 GENERAL INFORMATION

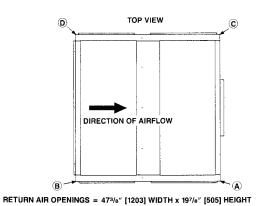

2.1 IMPORTANT INFORMATION ABOUT EFFICIENCY & INDOOR AIR QUALITY

Ô^} d ædÁ&[[|ā] * Áæ) å Á@ ææā] * Á^``ā] { ^} ơÁæ Á[} |^ Áæe Á æẹ Ác@ Áå * &cÁ•^• ơ { Ác@ææÁ&ædË |ā)• Ác@ Á&[| /° å ¼ | Á@æc^ å Áæā ÌĚV[¼ æā cæā] Á &[{ -{ | cÁæ) å Å*[[å Áā å [] | Áæā Á `æ‡æî ÉĀ ãóæ Áā[] [| cæ) ơÁ[Á@æc^ Ác@ Á] | [] ^ | Áàææa) & Áà^ ç ^^} Ác@ Áæā Áà^ā * Á*`]] |ā' å Áī Áræææ¶[[{ Á æ) å Ác@ Áæā Á^ č ¦ }] * Áā[Ác@ ÆS[[|ā] * Áæ) å Á@ææā] * Ár``ā] { ^} dÉA

2.2 CHECKING PRODUCT RECEIVED

Q { ^ å åæer^|^Á] [} Á^8^a] dæd Á8æd (} • Áæ) å Á8[} c^} or Á* @ ` |å Áæ^Á§ •]^8c/å Ád; † Ád; æ) • ãó Áæ æ Ë æ* ^ ÞÁM} ão Á¸ ão Ø&æ æ ^ å Á8æd (} • Å* @ ` |å Áæ^Á;]^}^å Áæ { ^ å åæer^|^ ÞÁGÆææ æ* ^ Æø Á; ` } å ÞÆÆÆ • @ ` |å Ææ^Á; [c^å Á; } Áx@ Ææ^|ãr^|- Ææ| & * { ^} or Ææ) å ÆæÆææ æ* ^ Æø|ææ Å _ ão Øæ Ææ^|ãr^|; å * Á 8æ‡|æ*|• E

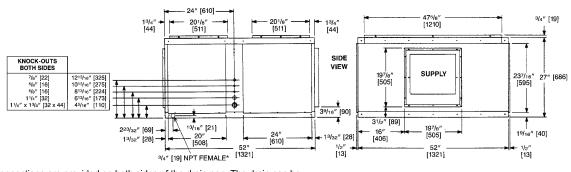
2.3 MODEL NUMBER NOMENCLATURE

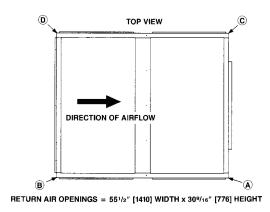


2.4 AVAILABLE MODELS

Available 230/230V/3-Phase/60 Hz Models

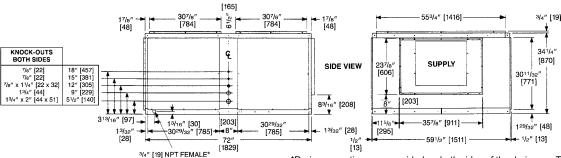
(-)HCLA2090CAR	(-)HCLP2090CAR
(-)HCLA2090CAS	(-)HCLP2090CAS
(-)HCLA2090CAT	(-)HCLP2090CAT


2.5 PHYSICAL DIMENSIONS - INCHES [mm]


(-)HCLA 71/2 AND 10 NOMINAL TONS [26 AND 35 kW]

	REFR	REFRIGERANT STUB SIZES, IN. [mm]						
MODEL	DUAL LIQ.	DUAL SUC.	SINGLE LIQ.	SINGLE SUC.				
090	1/2, 1/2 [13, 13]	7/8, 7/8 [22, 22]	1/2 [13]	1 1/8 [29]				
120	1/2, 1/2 [13, 13]	7/8, 7/8 [22, 22]	5/8 [16]	1 3/8 [35]				

MODEL	REFRIGERANT STUB SIZES, IN. [mm]			[mm]		ES, IN.	TOTAL	GROSS
MODEL	A	В	С	D	WEIGHT	WEIGHT		
090	127 [57]	57 [25]	50 [22]	131 [59]	365 [165]	409 [185]		
120	127 [57]	57 [25]	50 [22]	131 [59]	365 [165]	409 [185]		


^{*}Drain connections are provided on both sides of the drain pan. The drain can be connected to either side of the drain pan, but not both. The drain must be trapped.

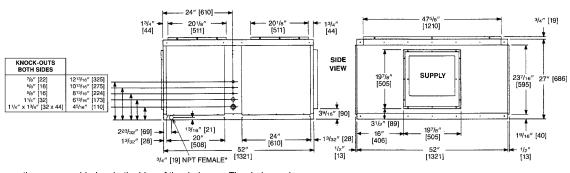
(-)HCLA 15 AND 20 NOMINAL TONS [53 & 70 kW]

Ī		REFRIGERANT STUB SIZES, IN. [mm]							
	MODEL	DUAL LIQ.	DUAL SUC.	SINGLE LIQ.	SINGLE SUC.				
	150	1/2, 1/2 [13, 13]	11/8, 11/8 [29, 29]	5/8 [16]	15/8 [41]				
	180	⁵ /8, ⁵ /8 [16, 16]	13/8, 13/8 [35, 35]	7/8 [22]	15/8 [41]				
	240 5/8, 5/8 [16, 1		13/8, 13/8 [35, 35]	⁷ /8 [22]	15/8 [41]				

MODEL	со	TOTAL					
WODEL	Α	В	С	D	WEIGHT		
150	144 [65]	127 [58]	117 [53]	105 [48]	495 [225]		
180	159 [72]	142 [64]	129 [59]	115 [52]	545 [247]		
240	159 [72]	142 [64]	129 [59]	115 [52]	545 [247]		

[] Designates Metric Conversions

*Drain connections are provided on both sides of the drain pan. The drain can be connected to either side of the drain pan, but not both. The drain must be trapped.

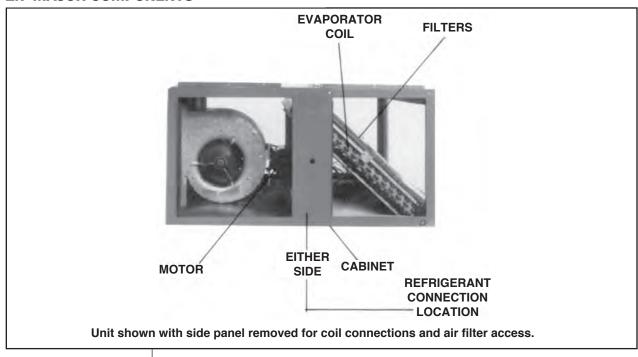

DIRECTION OF AIRFLOW

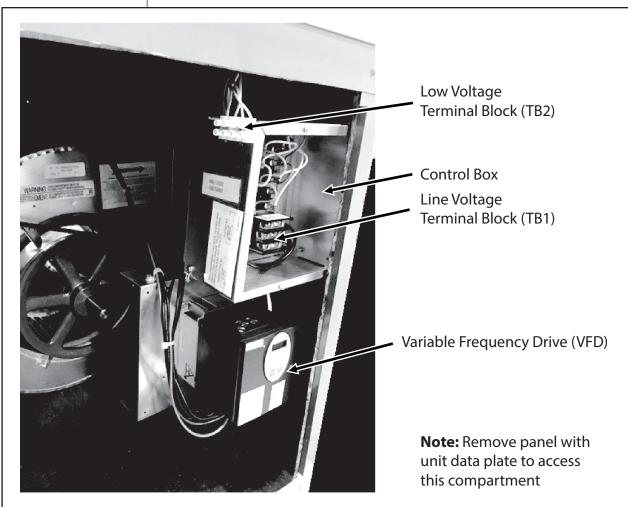
RETURN AIR OPENINGS = 473/8" [1203] WIDTH x 197/8" [505] HEIGHT

RHCLP 71/2 AND 10 NOMINAL TONS [26 AND 35 kW]

Ī		REFR	IGERANT STUB	SIZES, IN. [mi	m]	
	MODEL	DUAL LIQ.	DUAL SUC.	SINGLE LIQ.	SINGLE SUC.	
	090	1/2, 1/2 [13, 13]	7/8, 7/8 [22, 22]	1/2 [13]	1 1/8 [29]	
ĺ	120	1/2, 1/2 [13, 13]	7/8, 7/8 [22, 22]	5/8 [16]	1 3/8 [35]	

Ī	MODEL	REFRI		STUB SIZI m]	ES, IN.	TOTAL	GROSS	
	MODEL	A	В	С	D	WEIGHT	WEIGHT	
ſ	090	127 [57]	57 [25]	50 [22]	131 [59]	365 [165]	409 [185]	
ſ	120	70 [31]	145 [65]	123 [55]	66 [29]	403 [182]	447 [202]	




^{*}Drain connections are provided on both sides of the drain pan. The drain can be connected to either side of the drain pan, but not both. The drain must be trapped.

2.6 PHYSICAL DATA

		(-)HCLA2	(-)HCLA2	(-)HCLP2	(-)HCLP2
Cooling Size		090	120	090	120
Nominal size (tons)		7-1/2	10	7-1/2	10
Nominal CFM @ Ra Stage)	ted E.S.P. (2nd	3000 @ .25" 4000 @ .30"		3000 @ .35"	4000 @ .35"
# of Blower Speeds		2	2	2	2
1 st Stage Blower RI	PM %	63%	63%	63%	63%
	Standard-				
MOTOR HORSE-	1750 RPM 3 phase	2 HP	2 HP	2 HP	2 HP
POWER	Optional-				
	1750 RPM 3 phase	2 HP, 3 HP			
Blower Size - diame	ter x width	12 X 12	12 X 12	12 X 12	12 X 12
Blower Shaft Diamet	ter	3/4	3/4	3/4	3/4
Motor Sheave	1750 RPM 3 phase	1VP50	4.4 - 5.0	1VP50	AVL40
Belt Type & Size Std	I.	A-50	V-54	A-50	A-52
Coil Face Area (sq. f	řt.)	10.2	10.2	10.2	10.2
Coil Tube Diameter		3/8	3/8	3/8	3/8
Coil, Rows Deep-Fir	ns Per Inch	4/15	4/15	4/15	4/15
T.X. Valve Refrigera	nt Control	(2) CBBIZE-5-GA	(2) CBBIZE-5-GA	(2) CBBIZE-5-GA	(2) CBBIZE-6-GA
Filter Size (std.)* No	. Req'd	(4) 16 X 25 X 1			
CABINET:					
Finish		Prepaint	Prepaint	Prepaint	Prepaint
Sheet Metal		Galvanized	Galvanized	Galvanized	Galvanized
Gauge: Top		18	18	18	18
Sides		16	16	16	16
Bottom		18	18	18	18
Door and C	Covers	20 min.	20 min.	20 min.	20 min.
UNIT WEIGHTS:					
Operating		330 (R & S Drive) 341 (T Drive)	347 (R & S Drive) 358 (T Drive)	330 (R & S Drive) 341 (T Drive)	447 (R & S Drive) 458 (T Drive)
Shipping		396 (R & S Drive) 407 (T Drive)	413 (R & S Drive) 435 (T Drive)	365 (R & S Drive) 376 (T Drive)	513 (R & S Drive) 535 (T Drive)
OPTIONAL ACCES	ORIES WEIGHTS:				
Hot Water Coils		200	200	200	200
Steam Heating Coils		200	200	200	200

2.7 MAJOR COMPONENTS

2.8 IMPORTANCE OF PROPER INDOOR/OUTDOOR MATCH-UPS

2.9 IMPORTANCE OF A QUALITY INSTALLATION

| IMPORTANT: V@ A| | | a & & \(\) & \(\) & & \(\) & \(

 $V@\acute{h}\check{\wedge}\check{a}\{ ^{\wedge}\}.\acute{h}\circ \mathring{a}\otimes_{P}\acute{a}\wedge^{\wedge}\}.\acute{h}\circ \mathring{a}\otimes_{P}\acute{a}\wedge \mathring{a}\wedge \mathring{a}\wedge \mathring{a}\otimes_{P}\acute{a}\wedge \mathring{a}\wedge \mathring{a}$

″ÁOĐĐÙ ŒĐΦ ØÚ OĐÁP [ĒÁÍ, €ËÇŠæĕ^• σÁÔå ããã[} DÁP æðā[} æ∮ÁÔ|^&d å&æ∮ÁÔ[å^ĒÁÁÁ.

"ÁÞ ØÚŒ∃€ŒÁQ • œe|ææā} } Á, ÁŒāÁÔ[} åããā } ā, * Áæ} åÁK^} œāææā, * ÁÛ^ • e^{ • ÈÁÁÁ

~ÁÞØÚŒJ€ÓÁQ•œa|æaā}}ÁjÁ-ÁYæ{ ÁŒJÁP^æaā;*Áæ}åÁŒJÁÔ[}åããa}}ā;*ÁÛ^•¢^{•ÈÁ

Q.• cat|Ac@A' } $ãpA_3A'$ * & @AcAA' acAA' acA

3.0 INSTALLATION

3.1 TOOLS & REFRIGERANT

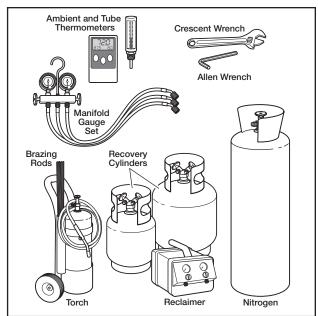
3.1.1 TOOLS REQUIRED FOR INSTALLING AND SERVICING R-410A MODELS

Manifold Sets:

″ÁN, Á⊈Á Á ⊖€ÁÜÙÓÓÁP∄ ŒĒÜÃB^ ″ÁN, ÁĘÁGÍ €ÁÜÙÓÖÁŠ[¸ĒÜÃB^ ″ÁÍ€ÁÚÙÓÖÁŠ[¸ĒÜÆB^ÁÜ^œdaå

Manifold Hoses:

″ÁÙ^¦¢æð, ÁÚ¦^••`¦^ÁÜæð), *Á(~ ÁÁ €€ÁÚÙŒÓ


Recovery Cylinders:

 $\text{"Á} \in \text{A\'UÙ} \tilde{\mathbb{O}} \text{A\'U} \land \bullet \bullet \text{`} \mid \land \text{A\'U} \text{ æeā} *$ $\text{"A\"O} \mid \text{CE} \land \text{A\'U} \text{ æe} \bullet \text{)} \mid \text{Leesa} \mid \text{A\'U} \text{ ee} \bullet \text{A\'U}$

NOTICE

R-410A systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410A equipment.

3.1.2 SPECIFICATIONS OF R-410A

Application: \(\hat{R}-410A\) is not a drop-in replacement for R-22. \(\hat{O}^* \) \(\dag{\frac{1}{4}} \) \(\dag{\frac{1}{4}} \) \(\delta \) \(\dag{\frac{1}{4}} \) \(\delta \) \(\delta

Composition:ÁÜË F€ŒÃ ÁæÁ ^æÊæ ^[d[] æÁ ãçč ¦^Á; ÆÃ Éà Áà ^å @Á

Pressure: The pressure of R-410A is approximately 60% (1.6 times) greater than R-22. U^8[ς ^\^\ Aaa\ &\ &\ A^\ \ \ a\ &\ A^\ \ \ a\ &\ A\ &\

Combustibility:ÁŒÁ¦ '^••` '^• Áæà[Ç^ÁFÁæá[[•] @ '^Éæák ãơč '^Á! ÁÜË F€Œæà åÁæãÁ&æ) Á à^&[{ ^Á&[{ à •cãi|^ÉR-410A and air should never be mixed in tanks or supply lines or be allowed to accumulate in storage tanks. Leak checking should never be done with a mixture of R-410A and air.ÁS^æà É&@ &\ ð *Á&æ) Áà^Á] ^!-{ !{ ^åÁ•æ^|^Á} æ^|^Á æ^|^A æ^|

3.1.3 QUICK-REFERENCE GUIDE FOR R-410A

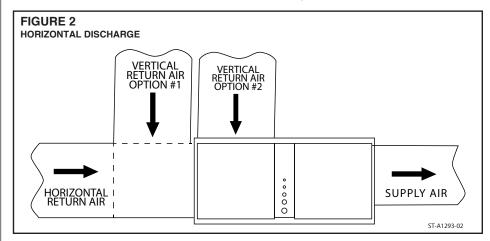
″ÁÁÜË F€ŒÁ^+ã^+àð oÁ;]^+ææ^•ÁææÁæð] | [¢ã; ææ^|ÂÎ €Ã Á@ã @+Á] +o•• \^ÁŒ£ÂÁæã ^• DÁœæð Á ÜËŒÊĎ)• *A6ææÁ^+6; 288ã *Á° *â+° *A6ææÁå^•â³ } ^åÁ[Á] +8æ°Á¸ ãæØÜË F€ŒÊ

"ÁÁÜË F€ŒÁ^-∤ã^¦æ) σÁ&ˆ|ã, å^¦• Áæ;^ Áã @Á∫•^Á§, Á&∣ |[¦È

″ÁÁÜË F€OĐÂS; Á, ão QÁ, co@¦ÁP ØÔ•ÊŠ; Á, }|^Á&[{]æsãa|^Á, ão QÁÚU ÒÁ, ã;•È

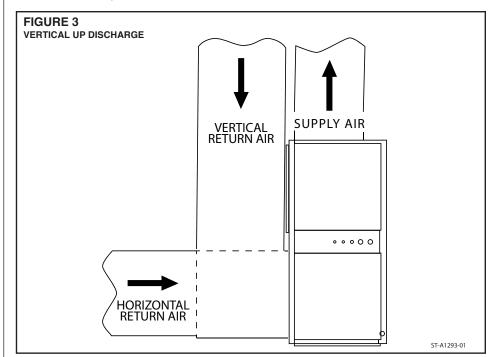
″ÁÁXæ&*`{Á,`{]•Á, ā|Á,[cÁ∧{[ç∧Á,[ã,č¦∧Á,[{ ÁÚUÒÁ,ãÁ,•^åÆ,ÁÜË,F€0Æ,^•c^{•È

"ÁÁÜË F€ŒŶŶŶŶŶŶŶŶÁĠŶÁŢÁà^Á&œèŶŶåÁ¸ãœÁã¸ããÁ'ŶŸã^¦æð°ÞĚÚ¦ā¦ÁŢÁTæð&@ÁFJJJÉÁ
ÜË F€ŒÁŶŸäŶ¦æðÁ\$? [ā¸å^!ŶÁœåÁæÁáā¸Áč¸à^ÉÅV@Ŷ^Á\$; [ā¸åÅ!ŶÁ°@¸º¸låÅà^Á^]¸óŸ]¦ãœÁ
ަÁŸ¸ã{ ^}ớ&œè≯ã, ÉÚ[ºŒ æ&æÁJJJÆ\$; [ā¸å^!ŶÆ; Áſ; ÓÝœœ¸^ÁæÁáā¸Áč¸à^Áæ¸åÁ;@¸°låÁ
à^Æşç^¦cŶåÆţÁŶ}Ŷ¸'Aã¸ããÁ&œè*ã, Á;ÁœÅŸ¸ã{ ^}Œ

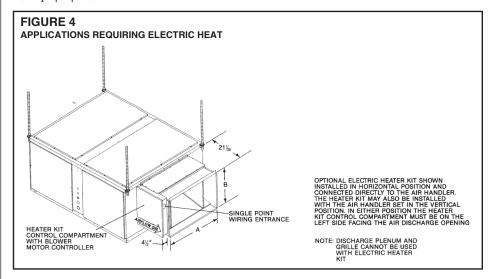

″ÁÁ

‴ÁÁÖ^•868æ) oÁGàl^ā) *Áæ*^} oDÁ(ˇ•oÁs^Á&[{]æaāa|^Á[¦ÁÚUÒÁ[ā;•Áæ) åÁÜË F€OÐÁ^√ð a ^¦æ) dÈ

3.2 APPLICATIONS & ORIENTATION


IMPORTANT: ÁÁ/ @ Ássá Ë@e) å | ^ ¦ Ás Á * ãzeà | ^ Á[; Ás å [[; Ás]] | ã&æá] } • Á] | `È

3.2.1 HORIZONTAL DISCHARGE



3.2.2 VERTICAL UP DISCHARGE

\@ Áæāj Ē@e) å|^; Á; æ Ás^Ás; • œ; As Ás@ Ás, Ás@ Ás^; cæ; As@ Ás & @; * ^ Á |^ č |} Ás * & Áse Ás@ Ás@ ;} Ás Áðā*; |^ Ás ÉðáÜ^|[& æ; Ás@ Ás^ č |} Áæāj Á; æ) ^| Át; Ás[ç^¦Ás@ Á; c@; Ás^ č |} Á æāj Á;]^} 尋 * Át; Áæ|[¸ Át; Ás@ Á@ ¦ã [} œ; As Č |} Ás ŠcÈ

3.2.3 APPLICATIONS REQUIRING ELECTRIC HEAT

3.2.4 SUSPENDING UNIT

3.2.5 INSTALLATION IN AN UNCONDITIONED SPACE

 $\begin{array}{l} V@\dot{A} & \&cc|_1 i \dot{A} \& \& \dot{A} & \dot{$

"Á QÁ+[{ ^Á&æ ^•Êxœ Á*) cã^ÁæãÁæà á|A*æà Á*a^Á; læi] ^åÁ, ão@Áã, •`|ææã|}È\@ā Á&æ}Áà^Á
å[} ^Áæ;Á] * Áæ;Áœ Á; ðiÁæ Á; ðiÁæáÁæ;Á; {] |^c^|^Á^} &|[•^åÁā,Áā,•`|ææã|}Ê*p^æ;AåÁæ) åÁ*o^!;cæA^Á
æ&A*••Æ;Ã; [çãa^åÁi;Á; -/ç^} oÁæ&&`{ `|ææã|}Á;-Æ; [ã·c`|^Æø;•äa^Áø@Æø;•`|ææã|}Á; -Æ;

"Á CḤ Áœ ¢āãæê Áṭ ç^ Áṭ æð Áã Á¹^&[{ { ^} å^åÁṭ Áṭ [c^8cÁc@ Á• c+8c+6] { Ár¢&^••ãç^Á 8æà ā ^oÁ, ^æā * Á; ÁæÁ^• d ã&c*å Áß ā¼å; æð Áð, ^EQÛ^^ÂÛ^8cā; ÀÆED

3.2.6 INSTALLATION IN CORROSIVE ENVIRONMENTS

3.3 AUXILIARY OVERFLOW PAN

Q ÁS[{]|āæ}&^Á¸āœÁ^&[*}ã^åÁS[å^•ÊÁæ}Áæč¢ā¸āæb^Á]æ)Á;*•óÁā,•œæ|^åÁ¸å^¦Áæd|Á ^``ā]{^}óÁS[}œæājā,*Á°çæð][|ææ[¦ÁS[ā;•ÁœæÁæA'Á[&ææ°åÁ¸á,ÁæÁ;Aæ¸ÁæÁ,dč&č¦^Á,@¦^Á åææ;æð^Áf,ÁœÁà;āåā¸*Á¸¦Áæ¸ãåā¸*ÁS[}ơ)¸ơÁ;æâÁ¸&&č¦Áæ;ÁææÆæÅ^•`|ơ¼,Áæ;Á &[ã¸Á妿æð,Á¸æð,Á¸kæÁç]]æ*^Áş,ÁœÁ¸á;ā æb^ÁS[}å^}•ææ°Å妿æð,Á¸ā¸ā¸*Ë

3.4 CLEARANCES

OZÁ, aj aj ~ { Áj -ÁG] +Ási Á^~~ aj^aÁj }Ási [o@Á aši^• Áj -Ás@ Ásaši Ë@e) å |^¦Áj ¦Áj ^¦Áj °; ásāj * Ás@ Á } šiÈ

3.5 DUCTWORK

A WARNING

Do not, under any circumstances, connect return ductwork to any other heat producing device such as fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, personal injury or property damage.

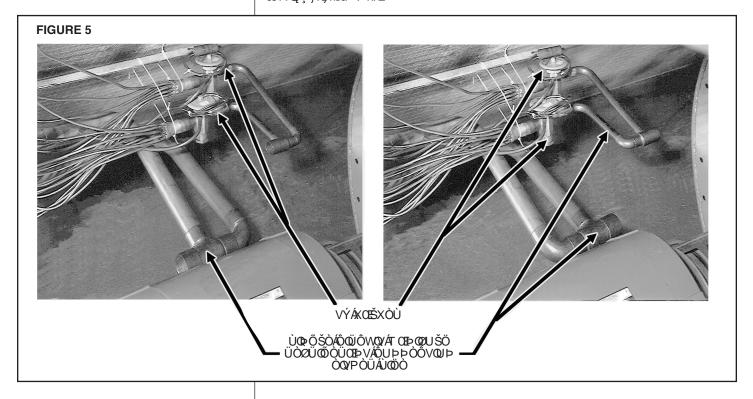
Ù@^^d, ^cæhá; &c [;\Á`; Á\$ Á; &] åāāā; }^åÁ; æ&^•Á; *•oáà^Á\$; *`|ææ^åÁæ; åÁ\$; c^\^åÁ; āo@ÁæÁ; cæļ[;\Áàæl; ā'; ĒZŒā;[*• Áà &c [;\A] æ Áà^Á*•A\$]; }•d *&c ahæ, åÆ; •cæh^åA\$; Aæ&\$[;åæ; &^Á; āo@ÁuT CBÔÞOÆÔ[; •d *&cā; }AÜcæ; åæååÁ; }AZŒā;[*•AÕ]æ•AÖ, &o ĒŽÔ &c [;\Á, *•o4&[;] j^Á; āo@ÁuT cBÔÞOæÃ; AU;[c^&cā; }AÜcē•[&āææā; }Aæ, Ác•c^*aAà AMB\$ÁUcæ; åæååÆ; FA[;AÔ]æ•AŒOŒA Ö &o ĒŽÔ@&\Á[&æhÆ; å^+Å; A^*** ā^{^}; o Æ; [;\Áæ; åÆ; e] æāā; }È

"Á Ù"]]|^**Á**|^}"{

″Á IMPORTANT: QÁœ) Á∿|à[, Áã Áã, &|`å∧å Áā, Ác@ Á; |^} { Á&|[•^Áq; Ác@ Á`; ãαÉÃãÁ; č•cÁ; [cÁà∧Á

| IMPORTANT: V@Á¦[} oÁ | [} Á@Á\^č¦} Áå &óÆÁ&[}} ^&c^åÁ[Áo@Áà|[^¦Á&æð] *Á { `•o^j}[Óà^Á;&|^, ^åÁð] q Áo@Áæd^æÁ; @¦^Áo@Áj[, ^¦Á ãð] *ÁæfÁ[&æ&^åÆÖ¦ð]•Á;¦Áæd] Á •&|^, Áj[ð] orÁ&æð; Áåæq æð^Áð]• `|æð] Áj} Áj ðā^•Á[&ææ^åÁð]•ðā^Á} ðĒ ″Á IMPORTANT: V@Á¦[,} ά

l^æ}•Ē


3.6 RETURN AIR FILTERS

IMPORTANT:ÁP à @Á 1 | ^æe^åÁ cî] a&ae|î Á@aeç^Á @# @\|A|\^•• \\A å [] Á 0 (24) Á (24) å æ å Å æååããã} æÁ¦^••`¦^Áå¦[]Á;-Á* &@Á

WARNING: Do not operate the air-handler without filters. A portion of the dust entrained in the air may temporarily lodge in the duct runs and at the supply registers. Any circulating dust particles could be heated and charred by contact with the electric heating elements. This residue could soil ceilings, wall, carpets, and other articles inside the building. Operating the system without a filter will also allow lint and dirt particles to accumulate on the indoor oil fins and restrict airflow through the coil.

3.7 REFRIGERANT LINE CONNECTIONS & CHARGING 3.7.1 PREPARATION

3.7.2 CONFIGURING AIR-HANDLER FOR A SINGLE OR DUAL REFRIGERANT CIRCUITS

3.7.3 REFRIGERANT LINES

V@Á[||[, ā, * Á, ā|Áà^Á; Á@|]Áā, Áæ&&[{]|ã @a, * ÁæÁ* &&^• ~ ~ |Áā, • cæ|ææā]}È

FEÁ Ùã^Áã ˇããÁã ^Á; ¦Á, [Á, [¦^Ás@e) à €ÁÚÙQÕÁ; ¦^•• ˇ¦^Áå; []È

$$\begin{split} \text{HEAY @} \} & \text{A^c}_{\text{cat}}[| \text{ae}_{\text{cat}}| \text{A^c}_{\text{cat}}| \text{A^$$

IÈÁ Q, • cæ|Án dæāj^¦Ëå¦āh¦Áæ) åÁn ā @AÁ |æ••Áāj Áã ˘ããÁjāj^È

 $\hat{\textbf{EA}} \; \hat{\textbf{U}} \; \hat{\textbf{a}} \; \hat{\textbf{c}} \; \hat{$

Î EÁY @} Á, æàā*Á [Á^-\a*a oÁ;ā]ā, *EÁæà ^Á\ç^\\^Á;\^&æ`aā;} Á([Á;\^ç^} oÁàãoÁæ) åÁ([ã Ë c`\^A\[{Á};c^\]ā, *Á@Á;ā]ā, *Ě

ÏËÁŠ[&æe^Λα@ Λα[}å^}•ā]*Á;}āΛλæ)åΑ̂`çæa][¦æe[¦ĢDÁæe Λα[•^Λα[*^c@¦Áæe Λ][••āa|^Λα[Λ(ā)āË {ã^Λ,Âjājā,*Á`}•È

Ì EÁ CEÁã ˇããÁṇā ^Án[|^}[āåÁṣ•cæh|^åÁs•cÁœæ@æåÁ;ÁœÆn¢]æ;•ā[}Áçæḥç^ÆsÁ^&[{ ^}å^åÈ JEÁ Ù^^Áœæà|^•Áà^|[,Áf¦Á*^}^!æhÁn*+ā*^!æ;oÁṇā ^Á•ãā;*Áæ;åÁ*ˇãæ;A*OÁ^}*cæÁ;A¢;æḥç^•Á

F=EAÜ^~^|A[A[A@A;æ][|Aæ]åA[ã ã AAA]^Ar^|^&a[]A[][8^å |Aæ]åA&@edoA[AA@A]ča[[|A´A]åA ā • cæ|æa[]}Á, a) * apA[|A[ac]æa |^A[|A[ac]ac Y @}Aa apA[*cå[[|A`]āo Aed^A[aæ&@^AA ã @Ac@AeaE@ed)å|^|A`•]a * Aa * apA&a& ar EArā^A c@A^+a^+a^+a^+Aa * apA&a& ar EArā^A c@A^+a^+a^+a^+Aa * apA&a& ar EArā^A

EQUIV. LENGTH TO	LIQUID LINE O.D.	SUCTION LINE O.D.		
EVAP. (FT.)	LINE O.D.	10 [35kW]		
0-50 [0-15m]	5/8 [26mm]	1 3/8 [35mm]		
51-100 [16-30m]	5/8 [26mm]	1 5/8 [41mm]		
101-150 [31-46m]	5/8 [26mm]	1 5/8 [41mm]		

	EQUIVALENT LENGTH, FT. [m] OF STRAIGHT TYPE "L" TUBING FOR NON-FERROUS VALVES AND FITTINGS (BRAZED)								
TUBE SIZE INCHES [mm] O.D.	SOLE- NOID VALVE	l	GLE LVE	SHORT RADIUS ELL	LONG RADIUS ELL	TEE LINE FLOW	TEE BRANCH FLOW		
1/2 [13]	12 [3.7]	8.3	[2.5]	1.6 [0.5]	1.0 [0.3]	1.0 [0.3]	3.1 [0.9]		
5/8 [16]	15 [4.6]	10.4	[3.2]	1.9 [0.8]	1.2 [0.4]	1.2 [0.4]	3.6 [1.1]		
3/4 [19]	18 [5.5]	12.5	[3.8]	2.1 [0.7]	1.4 [0.4]	1.4 [0.4]	4.2 [1.3]		
7/8 [22]	21 [6.4]	14.8	[4.4]	2.4 [0.7]	1.6 [0.5]	1.6 [0.5]	4.8 [1.5]		
11/8 [29]	12 [3.7]	18.8	[5.7]	3.0 [0.9]	2.0 [0.6]	2.0 [0.6]	6.0 [1.8]		
13/8 [35]	15 [4.6]	22.9	[7.0]	3.6 [1.1]	2.4 [0.7]	2.4 [0.7]	7.2 [2.2]		
15/8 [41]	18 [5.5]	27.1	[8.3]	4.2 [1.3]	2.8 [0.8]	2.8 [0.8]	8.4 [2.6]		
21/8 [54]	21 [6.4]	35.4	[10.8]	5.3 [1.6]	3.5 [1.1]	3.5 [1.1]	10.7 [3.3]		

3.7.4 LIQUID LINE FILTER DRIER

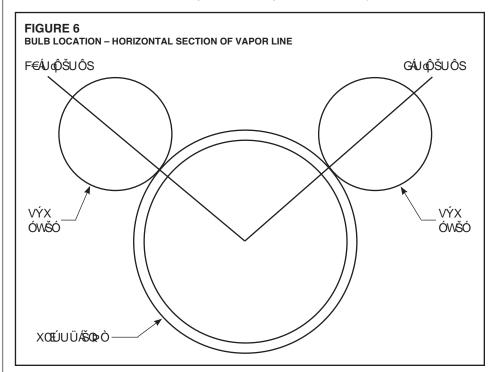
CE\\\^\A\\alpha\A\\al

3.7.5 BRAZING

CBAÁ3 • 齑^Ác@ Áč àā * Áæ) åÁ8【āÁ• @ ˇ |åÁà^ Áàā*] |æ&^ åÁ á 쥷@Åi ^ Å; āt[* ^ } Á] !ą !Áṭ Á@ Áà! æā * Á
] ![&^••Áṭ Á] !^c^} oÁc@ Áṭ !{ æá; } Æ; Áœ€{ ~ |Æ\$[]] ^!Á; ¢ão^ Áā • ão^ Ác@ Ác àā * ĒĀŶQĀā Æç^! ^ Á
ā] [!cæ) ơȝ [ơঝṭ ㈜ !^•• ˇ ; ā ^ Áo@ ∱ • ơ { Á ãoơȝ āt[* ^ } ڳ @ڳ Áā! æā ¾ Æ; Á; 爲ā Ё@ | ^ Á^ æ• ∱ āļÁ
- [! { ÆB, Ác@ Æì æ ^ Æb; ā ŒĐ @Ā Ææ&&[{] |ā @ åÆà ^ Á^ { [çā * Ác@ Æ*æ* * ^ Æ] [! ơʤ æḍc^ Æ\$[!^Ā; À
[] ^ Æ; Ác@ Æ; ˇ cå [[!à] ão⁴ ^ !çæc^ Ææc^ Æ; Ææ Ác@ Æ*æ Ác@ Æææ Ác@ Æææ Éc@ ÆææÊ
^ åÆ; ād [* ^ } Ár¢] æð å• ĒĀŶQāļÁc@ Æ* • ơ { Á āc@Æ; Â; ād [* ^ } Ác@[* * ÆææÆ; ēc@ !Æ*^!çæc^ Á; æḍc^ Æ

3.7.6 LEAK TESTING

CEơ\Ánd/Án¦æ^Ánjā,o•Ánd^Án[{]|^ơåÊĂ^]|æ&^Án@Ánædç^Án[!^Á^{[c^åÁ, @}Á, i*ā*Á ão@Á }ãi[*^}ÁnàåÁn@}Á^æÁr•oħœÁr•oħœÁr•oħ{An^Á;!^••*Ĭãā*ÁfÁrí€Ā,•ãÁ¸ão@á!^Ájāi[*^}ÁnàåA æ|[¸ÁnœÁr•o代{ÁnţÁrānÁ;!ÁnæAræoÁríÁ;ā*♂•Áng}}*^!ÁnĀ,[••ãi|^DánţÁnæ•*!^ÁnœÁ;!^••*!^Á å[^•Á;[oÁn;]]È


3.7.7 EVACUATION

GÁ; [Á/æð•Áæð^Áå^ơ&ơåÉÄ;]^}Ár@Á; *cå[[¦Á′}ãrÁ*^¦çã&^Áçæðç^•Á;¦Á; *cå[[¦Á′}ãrÁ*@]]^åÁ
ãr@ÁæÁ;āï[*^}Á@|åā;*Á&@æð*^Áæð;åArçæ&;ææ*Ár@Á*•ơ{Áå[;}Á;Á'€€Æ;ã&[]•Æ;¦Áà^|[, Á
à^-[;^Á&@æð*ā;*Ár@Á*••ơ{ĚÁ⁄Oæð;*¦^ÁrjÁræ&@Á €€Á;ā&[]•Æ;Ææ&;*{Áē;Aæð*ā}Á;ÁæÁ|
|^æáÁ;¦Ár¢&◊••ãr^Á;[ã*ċ;|^Áð;•ã*^Ár@Á*••ơ{ĚÁ⁄Oæ∱;Åræ&;Æð[;Æí];Ár;ãæ Ár@]]^åÁ&ææð**åÁ;ãæÁ
ÜÜÜ F€ŒÆŠ[Á;[ðÆ;]^}åk@Á*^¦çæ&^Á;æð;^•Á;GæÅæ¢,*åÁ;æðÁ*

3.7.8 REFRIGERANT CHARGING

3.8 TXV SENSING BULB ATTACHMENT

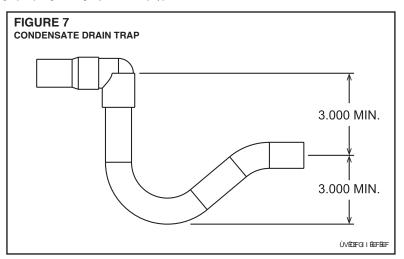
IMPORTANT: ÖUÁÞUVÁ,^¦-{¦{ Áæ}^Áa¦æā,*Á¸ão@Ác@ÁVÝXÁà`|àÁæææ&@åÁqíÁc@Áçæ}[¦Á |ā¸^ÈŒ&ċ¦Áà¦æā,*Á]]^¦æāā,}•Áœæç^Áà^^}Á&[{]|^c¢åÁæ,åáAc@Áċà,åã,*ÁœæÁ&[[|^åÁqíÃc@Á q`&σ&|æ[]Á;æ&@ÁYXXÁa`|àÁ*^&;¦^|´Á¸}ÁæÁ@;ã[}æ¢Á*^&æā,}Á,Ææ*Æ[¦¦^•][}åā,*Á;æð;[¦Á |ā¸^ÁææÁœÆÆÁ[ÁGÁ;αβ|[&¼Á,[•ãāā,}Ág•^^ÆÆ]*^ÅDĀ,āc®ÁœÁdæ]Á,¦[çãā^åÆ\$,ÆæÆ,ÁæÆ,ÁææÁæÆÈ

3.9 CONDENSATE DRAIN

IMPORTANT: Y @} $A(a + \bar{a}) * A(a + \bar{a})$

"ÁQ•œd|Á妿ðð,Ájð,^•Á•[Áœ,^Áå] Á∮[cÁà][&\Á•^¦çðð\Áæ&&^••Á(fÁ-√;)} œ́(, -Ác@,Á`) ððÉÁT ðð, ðð (Á

《ÁQÁn Á^8[{ { ^} å^åÁ@ænÁ@ænÁ@ÁnæněË@æn)å|^!Á8ænàā,^óÁnÁnán8@åÁn[ā*@|^Áå[], gaðáÁn[], æðáÁn@Á] | að æn Áðalæná Á8[]}^8cal} Án Ánæne ' | ^Án@ Á8[] å^} eæn Áðalæná eÁs[{]|^c, |^c, |^c, |^c, | Ang Áalæná Á] æn ÈV @ Áå[], gæðáÁnán8@Á @ ' |åÁna^Ánd]]![¢ā æn^|^Ánd) - Áng Áng Áng Áng Áng Áng Ónamar^e È


″Á Ö[Á,[ơÁ^åˇ&^Á妿ā)Á,∄,^Á•ã^Á/••Áo@æ)Á&[}}^&oā[}Áāā^Á,¦[çãā^åÁ;}Á&[}å^}•ææ^Á妿ā)Á]æ)É

"ÁÖ[Á;[ơÁs[} ^8oÁs[] å^} • ææ Áå aæ Á¼ā ^Áţ ÁæÁs[• ^å Á; lÁ;] ^} Á• ^, ^ lÁ; ā ^ĀÜ` } Ás[} å^} Ë
• ææ Áí Áæð Á;] ^} Áå aæð Á; lÁ; čå [[!• È

″ÁV@Áá¦æájÁáj^Á;@ĭjåÁà^Ááj•`|æc°åÁ,@¦^Á;^&^••æ;Á;Á;¦^ç^}oÁ;^ææij*ÁæijåÁåæ;æt^Á å`^Á;Ás[jå^}•æc;Á;¦{āj*Á;}Ás@Á;*œão^Á*¦ææk^Á,Æc@Áāj^È

 $\text{``A'U'} \text{``A'GO'A'} \text{``} \bullet \text{``a'A`a'} \text{`A'B'} \text{`$

˝Á V^•ơÁc@ Á&[}å^}•æc^Áàlæaṇ Álæò,Áæò,áAàlæaṇ Álā,^Áæec^lÁạō•œaḷæaṇ}Áā Á&[{]|^c^ÈÁÚ[ˇlÁ,æc^lÁ ā,q Áàlæaṇ Á]æò,ĒĆ^}[ˇ*@Áq Á ålæaṇ Ádæò,áÁp,^EČÔ@ & Áq Á(æà,^Árˇl,^Áàlæaṇ Á)æò,Á ålæaṇ ā,*Á&[{]|^c^|^ÊÁ,[Áræò,•Áæò,Áiˇ}åÁp,Áålæaṇ Áā,^Á æò,åÁp,æc²lÆo,Áàlæaṇ ā,*Ál[{Á c@Á,]^}Å)åÁp,Ác@Á,lā æò,Áàlæaṇ Áā,^È

3.10 THERMOSTAT

 $\dot{U}^{\hat{A}} \bullet \dot{G}^{\hat{A}} \bullet$

3.11 ELECTRICAL WIRING

3.11.1 POWER WIRING

- ´Á Q•œd|ÁæÁ8å&`ãóåãã8[}}^8oá\Áæå^``æe^Áã^ẾN[8æe^åÁ¸ão@jÁªã@Λ;Ææè¸åÁ^æåå¡Áæ&&^•Ë •ãå|^ÁgÁœÁÁ}ãÈ
- IMPORTANT: W) ão Á ão@^\\^&d &&Á@ æo^\Á ão Áð, cœ\^åÁ(æ Áà^Á^` ð] ^åÁ, ão@^(} }^Á[\Á { [\^\Ai\ a &@\&å&`ão^* ^• EN @ ^A` ^• Á] \ [o &o^o@ Áð, o \} æd\ āð; * Áð, Áo@ Á^\c^\} o^[-Ææ\ @ \o &ā&`āE

3.11.1.1 NO-HEAT APPLICATIONS

 $\begin{array}{l} & Q\acute{A} \mid ^{\lambda} \& d \ a\& \acute{A} @ \ aæ \acute{A} \ i \ o\'{A} \bullet cae \mid ^{\lambda} a \ E\~{A} \ i \ A\& \acute{A} @ \ A\'{A} \ i \$

3.11.1.2 ELECTRIC HEAT APPLICATIONS

IMPORTANT;ÁV@Áçæáææì/Á]^^åÁÖ¦āţ^ÁQXØÖDÁ; *•ÓţſĄ́[, ^¦^åÁS[}æð; [*•|^Áæ)åÁS[}Ëd[||^åÁs^Á@Á@Á;@{} [•œæÁæ]æ•Áţſ¸!^ç^}ØÁ;!^{æĕ; !^Áææ*!^Á;Æ@ÁxØÖE V@;!^;!^Êc@Áæ|[, ^¦Á;[[d;İ/][, ^!Á*]]|^A/æå•Á;[{ Ác@Áæ][, ^!ÁS]}ææd;!Á[&ææ*åÁ§Á c@ÁÜYPÒÁ;|^&dæðA@ææÁæA; *•ÓèAÁ([; c^åÁ;[{ Ác@Áæ][, ^!ÁS]}ææd;!Á ÇVFÉ/ŒÐ/HDÁţÁc@Áæ,ÁæÁæÁææÁæ;[, ^!Æ]}}^&d;!ÁŞFÉGESHDE

3.11.2 GROUNDING

▲ WARNING

The unit must be permanently grounded. Failure to do so can result in electrical shock causing personal injury or death.

- ″ÁŐ¦[ˇ}åąੌ*Á;æÂà^Áæ&&[{]|ã @°åÁà^Á;¦[ˇ}åã¸*Á;^œ♠Ás[}åˇãÁ; @°}Æij•œ♠l^åÆjÁæ&&[¦Ë åæ;&^Á;ão@^\|^&da&æA&[å^•Æi[å^•Æi[å°a, AcÈ

3.11.3 ELECTRICAL DATA – WITHOUT ELECTRIC HEAT

			Α	IR HANDLE	R MOTOR		MINIMUM	RECOMMENDED	MAXIMUM
MODEL NUMBER	DRIVE PACKAGE	hp	VOLTS	PHASE	"RATING PLATE AMPS"	"MOTOR LRA"	CIRCUIT AMPACITY	MINIMUM COPPER WIRE SIZE/ MAX. RUN IN FEET	OVERCURRENT PROTECTION AMPS
AC									
(-)HCLA2090C	R,S	2	208/230	3	6.2	47	15	#14 / 165	15
(-)HCLA2090D	R,S	2	460	3	3	24	15	#14 / 275	15
(-)HCLA2090C	Т	3	208/230	3	9.2	74.5	15	#14 / 135	15
(-)HCLA2090D	Т	3	460	3	4.6	38.1	15	#14 / 230	15
(-)HCLA2120C	R,S	2	208/230	3	6.2	47	15	#14 / 165	15
(-)HCLA2120D	R,S	2	460	3	3	24	15	#14 / 275	15
(-)HCLA2120C	T	3	208/230	3	9.2	74.5	15	#14 / 135	15
(-)HCLA2120D	T	3	460	3	4.6	38.1	15	#14 / 230	15
HP									
(-)HCLP2090C	R,S	2	208/230	3	6.2	47	15	#14 / 165	15
(-)HCLP2090D	R,S	2	460	3	3	24	15	#14 / 275	15
(-)HCLP2090C	Т	3	208/230	3	9.2	74.5	15	#14 / 135	15
(-)HCLP2090D	T	3	460	3	4.6	38.1	15	#14 / 230	15
(-)HCLP2120C	R	2	208/230	3	6.2	47	15	#14 / 165	15
(-)HCLP2120D	R	2	460	3	3	24	15	#14 / 275	15
(-)HCLP2120C	S, T	3	208/230	3	9.2	74.5	15	#14 / 135	15
(-)HCLP2120D	S, T	3	460	3	4.6	38.1	15	#14 / 230	15

3.11.4 ELECTRICAL DATA – WITH ELECTRIC HEAT

AIR HANDLER		HEATER KI	Т		Heating	Capacity	Min Circuit	Max Fuse or HACR
MODEL	Model	Voltage	KW	AMPS	kW	МВН	Ampacity	Breaker Size
AC								
RHCLA2090C	RXHE-DE020CA	208/240	20	43.1/48.9	15.6/20.2	53.2/68.9	67/73	70/80
RHCLA2090C	RXHE-DE030CA	208/240	30	60.8/70.2	11.0/29.6	75.1/101	89/100	90/100
RHCLA2090D	RXHE-DE020DA	480	20	24.7	20.2	68.9	37	40
RHCLA2090D	RXHE-DE030DA	480	30	35	29.7	101.3	50	50
RHCLA2120C	RXHE-DE020CA	208/240	20	43.1/48.9	15.6/20.2	53.2/68.9	67/73	70/80
RHCLA2120C	RXHE-DE030CA	208/240	30	60.8/70.2	11.0/29.6	75.1/101	89/100	90/100
RHCLA2120D	RXHE-DE020DA	480	20	24.7	20.2	68.9	37	40
RHCLA2120D	RXHE-DE030DA	480	30	35	29.7	101.3	50	50
HP								
RHCLP2090C	RXHE-DE020CA	208/240	20	43.1/48.9	15.6/20.2	53.2/68.9	67/73	70/80
RHCLP2090C	RXHE-DE030CA	208/240	30	60.8/70.2	11.0/29.6	75.1/101	89/100	90/100
RHCLP2090D	RXHE-DE020DA	480	20	24.7	20.2	68.9	37	40
RHCLP2090D	RXHE-DE030DA	480	30	35	29.7	101.3	50	50
RHCLP2120C	RXHE-DE020CA	208/240	20	43.1/48.9	15.6/20.2	53.2/68.9	67/73	70/80
RHCLP2120C	RXHE-DE030CA	208/240	30	60.8/70.2	11.0/29.6	75.1/101	89/100	90/100
RHCLP2120D	RXHE-DE020DA	480	20	24.7	20.2	68.9	37	40
RHCLP2120D	RXHE-DE030DA	480	30	35	29.7	101.3	50	50

3.11.5 COPPER WIRE SIZE - AWG. (3% VOLTAGE DROP)

S	Ļ	G€€ÆÎFá	FG	F€	ì	Ì	ì	ĵ	ĵ	ĵ	ļ	ı	Н	Н	G	G	F	€	€€
l ñ	E	FÍ€AŽÍÍá	FG	F€	F€	F€			ĵ	Î	Î		ı	Н	Н	G	F	€	€€
	N G	F ,€€,XT, € á	FI	FG	F€	F€				ĺ	Î			Н	Н	G	F	€	€€
Ιī	Ť	Í€ÁÆFÍá	FL	FG	F€	F€			1	<u>Î</u>	ĵ			Н	Н	G	F.	€	€€
ΙŢ	Ĥ		FÍ	Œ	GÍ	H€	HÍ	I€	Ιĺ	Í€	Ï€	Ï€	Ì€	J€	F€€	FF€	FG	FÍ€	FÏÍ
W I R E	F E E T	Á Á				ÞUVÒ Á Á	ÁY CÜÓ ÀUÜA ÞÉÓÉÓ	ÙW. ÁÓŒÙÒÖ. TUÜÒÁ/ ŒÁOUÜÁÖ	ÁIÞÁÔU	ÚÚÒÜÁ	OEDÚ EDÍ WÖYUVÔ ÚÜUVÔ OEDÚ EDÍ	^. ÔVUÜÜÌ	ÁÍ Í »ÔÁT (XĐÒY CE ÁÒCIĐPÁ	OPOTWT ŸÁJÜÁÔO ÔUÞÖW	ÁÜŒVOD ŒÓŠÒĒÂÙ ÔVUÜÈ	ÕÈ ÒÒ			

3.11.6 ELECTRIC HEATER KIT IDENTIFICATION LABEL

Šæà^|ÁQ`)^^ÁØã` ¦^ÂìÁ Áæ)åÁræ^ĉÁ[-Á°č¦çã&^Á

FIGURE 8

SUITABLE FOR USE WITH HEATER KITS

INSTALLER TO INDICATE WHICH HEATER IF ANY HAS BEEN INSTALLED. REFERENCE HEATER KIT RATING PLATE FOR BRANCH CIRCUIT DATA IF OPTIONAL HEATER KIT IS INSTALLED.

NO SUPPLEMENTARY ELECTRIC HEAT INSTALLED □

RXHE-DE020CA □

RXHE-DE030CA □

RXHE-DE020DA □

RXHE-DE030DA □

3.11.7 CONTROL WIRING

 $\begin{array}{l} \textbf{IMPORTANT:} \& \hat{A} \hat{O} | \textbf{za} \bullet \hat{A} \hat{C} \hat{A} | \hat{A}_{i} \hat{C} | \textbf{za} \bullet \hat{A}_{i} \hat{A}_{i} \hat{C} | \hat{A}_{i} \hat$

TABLE 1	
---------	--

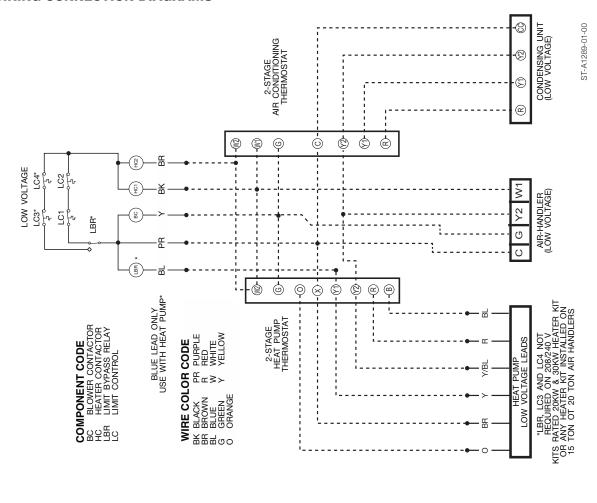
	FIELD WIRE SIZE FO	OR 24 VOLT THERMOSTAT CIRCUITS
П	S	

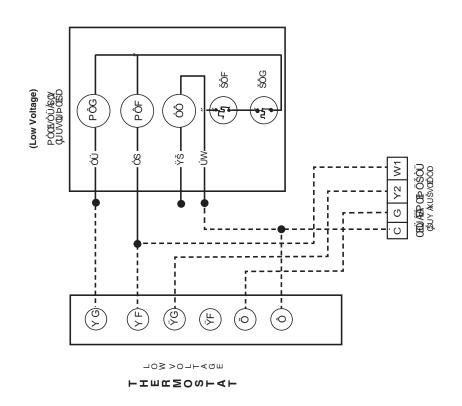
	sdwv		SOLID C	OPPER W	IRE - AW	G.		
П	d - b	3.0	16	14	12	10	10	10
П	Loa	2.5	16	14	12	12	10	10
П	stat	2.0	18	16	14	12	12	10
$\ $	r L L		50	100	150	200	250	300
	The			Len	gth of Ru	n - Feet (1	l)	

(1) Wire length equals twice the run distance.

NOTE: Do not use control wiring smaller than No. 18 AWG between thermostat and outdoor unit.

3.11.7.1 NO-HEAT APPLICATIONS


3.11.7.2 ELECTRIC HEAT APPLICATIONS


V@Áæ]] | [] | ãæe^Áœ| { [• œæÁs[] d [|Á_ã^•Á; *• œÁe^Ás[] } ^ &c^åÁq Áœ| { [• œæÁ] å ææf•Á [] } ^ &c^åÁq Áœ| { [• œæÁ] å ææf•Á [] } Ác@ Æœ^\Á] Áœ| Å æf•Á] Åc@Æ[] . Áç[|œæf^Ác^\{ ā æd∳ Á a [] &k Á[&æe^å,Á] } Ác@Á] . Áç[|œæf^Ác^\{ ā ædÁ a [] &k Á[&æe^å,Á] } Ác@Á,à æf*Ás[] } ^ &ǽA Å A æf*Ás[] } ^ &æí a Å Å A æf*Ás[] } A æf*Ás[] A æf*Ás[] } A æf*Ás[] } A æf*Ás[] } A æf*Ás[] A æf*Ás[] A æf*Ás[] A æf*Ás[] } A æf*Ás[] A æ

3.11.7.3 CONFIGURING OUTDOOR UNIT TRANSFORMER FOR 208V APPLICATIONS

Ø[ˈkÁGel XÁṣḍ] | ﷺ ﴿ الْمُواَمِّ الْمُواَمِّ الْمُواَمِّ الْمُوَامِ الْمُواَمِّ الْمُواَمِّ الْمُواَمِّ الْمُؤامِّ الْمُؤامِ الْمُؤامِّ الْمُؤامِّ الْمُؤامِّ الْمُؤامِّ الْمُؤامِّ الْمُؤامِنِ الْمُؤامِّ الْمُؤامِمِي الْمُؤامِّ الْمُؤامِّ الْمُؤامِّ الْمُؤامِّ الْمُؤامِّ الْمُؤْمِ الْمُؤامِّ الْمُؤامِنِي الْمُؤامِنِي الْمُؤامِنِ الْمُؤامِنِي الْمُؤامِنِي الْمُؤامِنِ الْمُؤْمِنِي الْمُؤامِنِي الْمُؤامِنِي الْمُؤْمِنِي الْمُؤامِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِمِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِ الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِ الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِنِي الْمُؤْمِ الْمُؤْمِنِي ال

3.11.8 WIRING CONNECTION DIAGRAMS

NOTE: INDOOR BLOWER MOTOR OPERATES AT FULL SPEED FOR 2ND STAGE COOLING AND FOR BOTH STAGES OF ELECTRIC HEAT.

** IMPORTANT NOTE ABOUT OPTIONAL HEATER KIT: (SEE ATTACHED TEXT)

3.12 AIR-FLOW

The air-handler is equipped with a Variable Frequency Drive (VFD) that provides a reduction in air-flow in the continuous fan mode, 1st stage cooling mode, and 1st stage heat pump heating mode.

Full air-flow is delivered for the 2nd stage of cooling mode, 2nd stage of heat pump heating mode, and all stages of electric heat. The VFD output frequency and air-flow level is based on the 24VAC thermostat inputs. Energizing the G low voltage terminal located on the air-handler low voltage terminal block causes the VFD to operate at 37.5 Hz (63% of full air-flow). Energizing the Y2 or W1 terminals on the low voltage terminal block causes the VFD to operate at 60Hz (full air-flow). The VFD is programmed at the factory for optimum performance and therefore requires no adjustment when air-handler is installed.

The blower performance charts in Section 3.12.2 is based on a dry coil with the factory 1" fiberglass filters in place and the VFD operating at 60Hz (100%). A component resistance chart is provided in Section 3.12.3 to provide the pressure drop for the various accessories that will need to be added to the external static pressure of the duct system before selecting a drive package and motor sheave setting. Keep in mind that high efficiency pleated filters will likely have more pressure drop than the factory filters, so that additional pressure drop will also need to be taken into account. Refer to the filter manufacturer's pressure drop data for more information.

3.12.1 DRIVE PACKAGE DATA

(-)HCLP2120 Drive Package Data (2nd Stage Operation)

		Sheave	Selection									
Drive	Мо	tor	Blo	wer	Belt	Motor	API	ROXIMATE BL	OWER RPM@	MOTER SHEA	AVE TURNS OF	PEN
	Part No.	Dia	Part No.	Dia		HP/[KW]	0	1	2	3	4	5
R	1VL40	3.75	AK79H	7.75	A49	2 [1491.4]	816	770	723	681	630	586
S	1VP50	4.75	AK79H	7.75	A50	3 [2237.1]	1040	998	955	912	869	823
Т	1VP56	5.35	AK79H	7.75	A51	3 [2237.1]	1149	1113	1077	1035	996	952

NOTES:

- 1. Factory sheave settings are shown in bold type and shaded.
- 2. Do not set motor sheave below minimum or maximum turns open shown.
- 3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
- 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

(-)HCLA2090 & (-)HCLP2090 Drive Package Data (2nd Stage Operation)

		Sheave \$	Selection			Motor						
Drive	Мо	otor	Blo	wer	Belt	HP/[KW]	API	ROXIMATE BL	OWER RPM@	MOTER SHEA	AVE TURNS OF	PEN
	Part No.	Dia	Part No.	Dia			0	1	2	3	4	5
R	1VP50	4.75	AK104	10.25	A50	2.0 [1491.4]	801	768	732	696	662	627
S	1VL-44	4.15	AK71H	6.95	A44	2.0 [1491.4]	998	955	911	865	819	773
Т	1VL-44	4.15	AK59	5.75	A42	3 [2237.1]	1220	1164	1109	1049	990	926
U	1VP-65	6.5	AK79	7.75	A48	3 [2237.1]	1322	1280	1240	1197	1153	1109

NOTES:

- 1. Factory sheave settings are shown in bold type and shaded.
- 2. Do not set motor sheave below minimum or maximum turns open shown.
- 3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
- 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

[] Designates Metric Conversions

AIRFLOW PERFORMANCE — RHCLP2120 10 TON [35.1kW]		Air Flow	CFM [L/s]		3200 [1510]	3300 [1557]	3400 [1604]	3500 [1652]	3600 [1699]	3700 [1746]	3800 [1793]	3900 [1840]	4000 [1888]	4100 [1985]	4200 [1982]	4300 [2029]	4400 [2076]	4500 [2123]	4600 [2171]	4700 [2218]	4800 [2265]
V PER	(-)HCLP2120 Voltage 208/230, 460, 575 — 3 phase 60 Hz		0.1 [.02]	RPM W	1					1	590 1242	601 128	612 1353	623 1414	685 1480	846 1548	658 1621	670 1697	1777	1861	707 1949
Ŗ	20 Volta		121								Н	1296 6			-			_	_		-
SMA	ge 208/23		0.2 [.0	RPM V	-			11: 685	111	610 12	620 12	631 13	641 13	652 14	99 12	675 15	989	21 869	710 18	721 19	733 20
SE	10,460,5		[90]	W RP	- 26)9 —	<u> 19</u> —	1137 62	1182 6	1230 64	1282 65	1338 66	1398 65	1461 68	1528 65	1599 70	1674 73	1752 72	1834 Z	1920 74	2009 76
1	75-3 p		0.3 [.0	RPM V	591 10	109	11 019	620 11	630 12	640 12	650 13	1384	P 029	981	0851 769	708 16	714 17	81 227	736 18	748 19	760 20
갦	hase 60 l		[107]	W RPM	1058 623	1093 632	1132 641	1175 650	1222 659	1272 669	1326 679	384 689	446 699	1151	580 719	1653 730	1730 741	1810 752	1894 763	1982 774	2073 785
P21	Zł.		0.4 [.10]	W W	3 1093	2 1131	1 1172	0 1217	9 1265	9 1318	1374	9 1433	1497	1564	635	0 1710	1 1789	2 1871	3 1957	4 2047	5 2140
20 1				RPM	13 653	11 662	7 671	089 /	989	869 8	707	3 717	727	737	147	157	191 6	1.1	788	7199	018 01
0 TO			0.5 [.12]	W	1132	1171	1214	1261	1312	1366	1424	1486	1552	1621	1694	1771	1851	1936	2024	2116	2211
N [35			9.0	RPM	684	692	700	709	718	726	736	745	754	764	773	783	793	803	814	824	832
5.1kV			6 [.15]	W	1174	1215	1260	1309	1362	1418	1478	1542	1610	1681	1756	1835	1917	2004	2094	2188	2285
			0.7	RPM	713	721	729	738	746	754	292	772	781	06/	799	608	819	828	838	849	829
H 09			[11]	М	1219	1263	1310	1361	1415	1474	1536	1601	1671	1744	1821	1902	1987	2075	2167	2263	2362
— 60 Hz — SIDEFLOW			8.0	RPM	743	750	728	992	774	782	06/	66/	203	918	872	834	844	823	863	872	882
SIDE			[.20]	W	1268	1313	1362	1415	1472	1532 8	1596	1664	1736	1811	1890	1973 8	2069	2150 8	2244	2342 8	2443
FLO		Ex	.] 6.0	RPM \	771	778	786	793 14	801	31 608	817 16	825 17	833 18	842 18	850 18	829 20	868 21	22 118	388	77 968	905 25
>		cternal St.	[23]	W RF	1320 8	1367 8	1419 8:	1473 8.	1532 8.	1594 83	8 0991	1730 81	1804 81	1881	8 7961	2047 81	2136 88	8222	2324 9:	2424 9:	2527 9;
		atic Pres:	1.0 [.2	RPM V	800 13	806 14:	813 14	821 15	828	835 16	17.	851 18	829 18	867 19	875 20	888 21:	892 22	23	910 24	919 25	928 26
		sure — h	[25]	W RPM	1375 827	1425 834	1478 840	1535 847	1595 854	1660 861	1728 869	928 0081	1875 884	1955 891	2038 899	2124 907	2215 916	2309 924	2407 933	2509 941	2614 950
		ches of V	1.1 [.27]	W W	1434	1486	1541	1600	1662	1729	99 1799	76 1872	1950	1 2031	9 2116	77 2205	16 2298	2394	13 2494	11 2598	30 2705
		External Static Pressure — Inches of Water [kPa]		RPM	14 854	198 901	11 867	873	23 880	887	168 6	72 901	806 00	316 115	6 923	15 931	88 939	747	₩ 952	88	226 912
		-	1.2 [30]	W	1496	1550	1607	1668	1732	1801	1873	1949	2028	2111	2198	2289	2384	2482	2584	2690	2799
			1.3	RPM	881	887	893	668	902	912	918	925	932	686	946	623	196	696	226	382	663
			[:32]	М	1562	1617	9/91	1739	9081	1876	0961	8707	2112	2195	1877	2377	2473	823	2292	S8/Z	2882
			1.4	RPM	200	913	918	924	930	936	942	949	955	796	696	926	983	066	866	1005	1013
			[32]	W	1631	1688	1749	1814	1883	1955	2031	2111	2194	2282	2373	2467	2566	2668	2774	2884	2997
			1.5	RPM	933	1 826	943 1	949 #	954 #	Z 096	3996	972 2	Z 878	2 × Z	991 ∌	2 866 3	1004	I011 Z	1019	1026 2	1033 3
			.37]	W RP	1703 95	1762 963	1825 968	1892 97	1963	2037 984	2115 989	2197 995	282 1001	2372 100	2465 10:	2562 1019	2662 1025	2766 1032	2874 103	2886 10	3102 1053
			1.6 [.40]	RPM W	828 1778	53 1840	58 1905	973 1974	978 2046	34 2123	39 2203	35 2286	01 2374	1006 2465	1013 2560	10 2659	2762	32 2868	1039 2978	1046 3092	53 3209
				RPM	18 983	186 01	15 992	'4 997	1001	3 1006	1012	1017	'4 1022	1028	1034	9 1040	2 1046	38 1052	1059	1065	1072
			1.7 [.42]	W	1857	1921	1988	2069	2133	5 2211	2293	2379	2469	3 2562	2659	2760	2864	2973	3085	3200	3320
				RPM	1007	1011	1015	1020	1024	1029	1034	1039	1044	1049	1054	1060	1066	1072	1078	1084	1090
			1.8 [.45]	W	1939	2005	2074	2147	2223	2304	2388	2475	2567	2997	2761	2864	2971	3081	3195	3313	3434
			1.9	MdN	1031	1035	8601	1042	1047	1051	1055	1060	1065	0/01	5201	0801	1085	1601	260 I	1102	6011
			[.47]	W	2025	2092	2163	2238	2317	2399	2485	25/5	2669	2766	2867	2972	3080	3192	3308	3428	3551
			2.0	RPM	1054 21	1057 21	1001	1065 23	1068 24	1072 24	1076 25	1081 26	72 2801	1090 28	1094 29	00 6601	1104 31	33	1115 34	1120 35	1126 36
											10	50	-	00	80			63	24	rO.	90

Afflow ARREONO CORRECTION FACTORS* Wet Call Downflow Downflow Economizer RAD Parper I Horizontal Economizer RAD Parper I Call RADNA AREA (Sci III) Concentric Cell RADNA AREA (Sci III) Concentri							COMP	COMPONENT AIRFLOW RESISTANCE	TANCE		
1048 MBH Sensible MBH Power WW One (a)	Airflow	⋖.	AIRFLOW CORRECTION	N FACTORS *	Wet Coil	Downflow	Downflow Economizer RADampe	r Horizontal Economize r RA Damper	Concentric Grill RXRN-FA65 or	Concentric Grill RXRN-A461 or	Concentric Grill RXRN-A466 or
0.55 0.67 0.87 0.68 (sq) 0.06 (sq) 0.06 (sq) 0.05 (sq) <th>CFM [L/s]</th> <th>Total MBH</th> <th>Sensible MBH</th> <th>Power kW</th> <th></th> <th></th> <th></th> <th>Resistance — Inches of Water [kPa]</th> <th></th> <th></th> <th></th>	CFM [L/s]	Total MBH	Sensible MBH	Power kW				Resistance — Inches of Water [kPa]			
6.97 0.68 0.69 0.00 [.00] <	3200 [1510]	96'0	0.87	86:0	0.06 [.01]	[00.] 00.0	[:03]	0.05 [.01]	0.31 [.08]	-	-
638 0.09 0.09 0.00 [.00] 0.00 [.00] 0.00 [.00] 0.00 [.00] 0.01 [.00] <t< th=""><td>3300 [1557]</td><td>26'0</td><td>0.88</td><td>0.99</td><td>[00] 400</td><td>[00:] 00:0</td><td>0.10 [.02]</td><td>0.05 [.01]</td><td>0.34 [.08]</td><td>-</td><td>-</td></t<>	3300 [1557]	26'0	0.88	0.99	[00] 400	[00:] 00:0	0.10 [.02]	0.05 [.01]	0.34 [.08]	-	-
0.88 0.02 0.09 0.00 [.00] 0.01 [.03] 0.01 [.03] 0.05 [.01] -<	3400 [1604]	26'0	0:00	0.99	[00.] 70.0	[00:] 00:0	0.10 [.02]	0.06 [.01]	0.37 [.09]	-	-
0.58 0.59 0.59 0.59 0.05 [00] 0.01 [03] 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [01] - 0.05 [02] 0.05 [02] 0.05 [02] 0.05 [02] 0.05 [02] 0.07 [02] - 0.05 [02]	3500 [1652]	86:0	0.92	0.99	[00] 400	[00:] 00:0	0.11 [.03]	0.06 [.01]	1	-	-
6.99 0.68 1.00 0.00 [60] 0.01 [63] 0.05 [60] 0.01 [63] 0.05 [60] 0.01 [63] 0.05 [60] 0.01 [63] 0.05 [60] 0.01 [63] 0.07 [62] 0.05 [62] 0.05 [62] 0.05 [63] 0.07 [62] 0.07 [62] 0.05 [62] <td>3600 [1699]</td> <td>86:0</td> <td>0.93</td> <td>0.99</td> <td>[20:] 80:0</td> <td>[00:] 00:0</td> <td>0.11 [.03]</td> <td>0.06 [.01]</td> <td>1</td> <td>0.16 [.04]</td> <td>-</td>	3600 [1699]	86:0	0.93	0.99	[20:] 80:0	[00:] 00:0	0.11 [.03]	0.06 [.01]	1	0.16 [.04]	-
6.59 0.57 1.00 0.08 [02] 0.00 [03] 0.01 [03] 0.07 [03] - 0.15 [65] 0.05 [65] 1.00 0.59 1.00 0.08 [02] 0.00 [03] 0.01 [03] 0.07 [03] - 0.02 [05] 1.00 1.00 1.01 0.05 [03] 0.00 [03] 0.01 [03] 0.07 [03] - 0.02 [05] 1.01 1.02 1.01 0.05 [03] 0.00 [03] 0.01 [03] 0.07 [03] - 0.02 [05] 0.02 [05] 1.01 1.02 1.03 0.01 [03] 0.01 [03] 0.05 [03] - 0.02 [05] 0.02 [05] 1.02 1.03 1.02 0.01 [03] 0.00 [03] 0.05 [03] - 0.02 [03] 0.05 [03] - 0.02 [03] 0.05 [03] - 0.02 [03] 0.05 [03] - 0.05 [03] 0.05 [03] - 0.05 [03] 0.05 [03] - 0.05 [03] 0.05 [03] - 0.05 [03] - 0.05 [03] - 0.05 [03] - 0.05 [03] - <td>3700 [1746]</td> <td>66'0</td> <td>0.95</td> <td>1.00</td> <td>0.08 [.02]</td> <td>000 [.00]</td> <td>0.12 [.03]</td> <td>0.06 [.01]</td> <td>-</td> <td>0.18 [.04]</td> <td>-</td>	3700 [1746]	66'0	0.95	1.00	0.08 [.02]	000 [.00]	0.12 [.03]	0.06 [.01]	-	0.18 [.04]	-
1,00 0.99 1,00 0.08 [02] 0.09 [03] <td>3800 [1793]</td> <td>0.99</td> <td>0.97</td> <td>1.00</td> <td>0.08 [.02]</td> <td>000 [:00]</td> <td>0.12 [.03]</td> <td>0.07 [.02]</td> <td>1</td> <td>0.19 [.05]</td> <td>-</td>	3800 [1793]	0.99	0.97	1.00	0.08 [.02]	000 [:00]	0.12 [.03]	0.07 [.02]	1	0.19 [.05]	-
1,00 1,00 1,01 0.00 [.00] 0.03 [.00] 0.03 [.00] 0.03 [.00] 0.03 [.00] 0.04 [.00] 0.05 [.00] 0.04 [.00] 0.05 [.00] <	3900 [1840]	1.00	0.99	1.00	0.08 [.02]	000 [.00]	0.13 [.03]	[:03]	1	0.20 [.05]	1
1,00 1,02 1,01 0.05 [02] 0.04 [03] 0.05 [03] 0.04 [03] 0.04 [03] 0.04 [03] 0.04 [03] 0.04 [03] 0.04 [03] 0.05 [03] <td>4000 [1888]</td> <td>1.00</td> <td>1.00</td> <td>1.01</td> <td>0.09 [.02]</td> <td>0.00 [.00]</td> <td>0.13 [.03]</td> <td>0.07 [.02]</td> <td>_</td> <td>0.21 [.05]</td> <td>_</td>	4000 [1888]	1.00	1.00	1.01	0.09 [.02]	0.00 [.00]	0.13 [.03]	0.07 [.02]	_	0.21 [.05]	_
101 104 105 107 0.05 [02] 0.05 [03] 0.04 [03] 0.04 [03] 0.05 [03]	4100 [1935]	1.00	1.02	1.01	0.09 [.02]	0.00 [.00]	0.14 [.03]	0.07 [.02]	-	0.23 [.06]	_
1.01 1.06 1.00 0.00 [.00] 0.05 [.04] 0.05 [.04] - 0.05 [.06] - 0.05 [.06] - 0.05 [.06] - 0.05 [.07] - 0.05 [.07] - 0.05 [.07] - 0.07 [.07] - 0.07 [.07] - 0.07 [.07] - - 0.07 [.07] - - - 0.07 [.07] -	4200 [1982]	1.01	1.04	1.01	0.09 [.02]	000 [.00]	0.14 [.03]	0.08 [.02]	-	0.24 [.06]	-
1.02 1.07 1.02 0.10 [cg] 0.00 [cg] 0.15 [cg] 0.05 [cg] <td>4300 [2029]</td> <td>1.01</td> <td>1.06</td> <td>1.01</td> <td>0.10 [.02]</td> <td>000 [00]</td> <td>0.15 [.04]</td> <td>0.08 [.02]</td> <td>-</td> <td>0.25 [.06]</td> <td>_</td>	4300 [2029]	1.01	1.06	1.01	0.10 [.02]	000 [00]	0.15 [.04]	0.08 [.02]	-	0.25 [.06]	_
1.02 1.09 1.02 0.01 [cg] 0.00 [cg] 0.05 [cg] 0.05 [cg] -	4400 [2076]	1.02	1.07	1.02	0.10 [.02]	[00.] 00.0	0.15 [.04]	0.08 [.02]	-	0.27 [.07]	-
103 111 102 0.10 (w) 0.00 (w) 0.05 (w) </th <td>4500 [2123]</td> <td>1.02</td> <td>1.09</td> <td>1.02</td> <td>0.10 [.02]</td> <td>[00.] 0000</td> <td>0.16 [.04]</td> <td>0.09 [.02]</td> <td>_</td> <td>_</td> <td>_</td>	4500 [2123]	1.02	1.09	1.02	0.10 [.02]	[00.] 0000	0.16 [.04]	0.09 [.02]	_	_	_
1.03 1.12 1.03 0.11 (cd) 0.00 (cd) 0.17 (cd) 0.05 (cd) -	4600 [2171]	1.03	1.11	1.02	0.10 [.02]	[00.] 00.0	0.16 [.04]	0.09 [.02]	-	-	0.30 [.07]
104 1.14 1.03 0.11 [63] 0.00 [63] 0.17 [04] 0.10 [02]	4700 [2218]	1.03	1.12	1.03	0.11 [.03]	[00.] 00.0	0.17 [.04]	0.09 [.02]	-	-	0.31 [.08]
	4800 [2265]	1.04	1.14	1.03	0.11 [.03]	[00:] 00:0	0.17 [.04]	0.10 [.02]	-	-	0.32 [.08]

* Multiply correction factor times gross performance data — resulting sensible capacity cannot exceed total capacity.

AIRFLOW PERFORMANCE RHCLA2090 & RHCLP2090—7.5 TON [26.4kW] — 60 Hz — SIDEFLOW

		er [kPa]	1.2 [30] 1.3 [32] 1.4 [35] 1.5 [37] 1.6 [40] 1.7 [42]	RPM W RPM W RPM W RPM W RPM W	1004 1103 1035 1157 1066 1212 1096 1288 1126 1327 1156 1387	1013 1162 1044 1219 1075 1277 1105 1337 1135 1399 1164 1463	1023 1226 1054 1286 1084 1347 1114 1411 1444 1476 1173 1542	1033 1294 1063 1357 1094 1422 1124 1489 1153 1557 1182 1627	1043 1367 1073 1433 1103 1584 1133 1571 1162 1643 1191 1716	1053 1444 1083 1514 1113 1585 1142 1658 1172 1733 1200 1810	1063 1526 1093 1599 1123 1674 1152 1750 1181 1828 1209 1908	1074 (613 1104 (689 1133 1767 W 1162 (847 1191 1928 1219 201	. 1084 1705 1114 1784 1143 1865 1172 1948 1201 2033 1229 2119	1095 1801 1125 1883 1154 1968 1182 2054 1211 2142 1254 2222	1106 1901 1135 1987 1164 2075 1193 2164 1221 2255 1265 239	1117 2006 1146 2096 1175 2187 1203 2279 1250 2382 1276 246	1175 2602 1204 2708 1186 2303 1214 2399 1261 2505 1287 2587
		External Static Pressure — Inches of Water [kPa]	0.9 [22] 1.0 [25] 1.1 [27]	M W RPM W RPM W	9601 966 9601 656 926 1	1023 968 1084 1004 1145	1075 977 1138 1012 1200	1133 987 1197 1001 1233	2 1196 996 1261 1012 1302	3 1264 1006 1331 1022 1376	3 1338 1016 1406 1032 1455	t 1416 1012 1466 1043 1539	5 1500 1023 1551 1054 1627	.7 1590 1035 1640 1065 1720	5 1654 1046 1735 1076 1817	7 1749 1057 1833 1088 1919	8 2296 1118 2397 1147 2499
ON [=0:4 OO			0.7 [.17] 0.8 [.20]	RPM W RPM W RPM	843 854 883 915 921	855 898 893 961 931	867 948 904 1012 941	878 1003 915 1068 951	890 1130 962	903 1128 938 1196 973	915 199 950 1269 983	928 275 961 1346 994	940 1356 973 1429 1005	953 1442 985 1516 1017	966 1534 998 1610 1015	979 1631 1010 1708 1027	1028 2101 1058 2198 1088
101011	0 — 3 phase 60 Hz		[10] 0.5 [12] 0.6 [15]	W RPM W RPM W	696 767 745 803 792	741 780 790 815 835	788 793 838 828 883	839 806 890 840 938	893 815 926 853 995	951 829 989 866 1059	985 843 1057 879 1128	1056 857 1130 893 1203	1133 871 1208 906 1283	1216 886 1292 920 1368	1303 900 1381 934 1458	1396 915 1475 948 1554	1940 991 2026 997 2006
	-)HCLA2090, (-)HCLA2090 & (-)HCLP2090 Voltage 208/230, 460 — 3 phase 60 Hz		[.05] 0.3 [.07] 0.4	W RPM W RPM	590 673 644 720	634 688 688 734	680 703 736 748	730 718 786 763	783 734 839 778	839 750 896 793	908 936 292 868	961 784 1019 820	1026 802 1085 836	1095 815 1139 851	1167 831 1225 866	1236 847 1316 882	1766 931 1853 962
	_	Air Flow	CFM [L/s] 0.1 [.02] 0.2	RPM W RPM	2400 [1133] - 626	2500 [1180] - 641	2600 [1227] - 657	2700 [1274] 628 671 673	2800 [1321] 645 724 690	2900 [1368] 663 779 707	3000 [1416] 682 838 725	3100 [1463] 701 900 743	3200 [1510] 720 965 761	3300 [1557] 740 1033 780	[1604] 760 1104 P99	3500 [1652] 781 1179 812	006 7/91 898 18881

AIRELOW CORRECTION EACTORS *
AINTEON CONNECTION LACTORS
Total MBH Power kW
0.93 0.73 0.96 0.04 [.01]
0.93 0.74 0.96 0.96
[10] 500 650 60]
[10] 20.0 75 0.09 76.0
[to] 500 660 860
[0.1] 0.05 (0.1] 0.05 (0.1]
[10] 90'0 86'0 88'0 88'0
[10] 90'0 86'0 58'0 96'0
[10] 900 860 280
0.97 0.08 0.09 0.007 [.02]
0.97 0.99 0.99
0.38 0.92 0.07 [0.2]
0.98 0.99 0.99
0.59 0.09 0.08 [.02]
0.59 0.08 [.02]
1.00 0.99 1.00 0.08 [.02]
1.00 1.01 0.09 [.02]

* Multiply correction factor times gross performance data — resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

3.12.3 COMPONENT AIR-RESISTANCE DATA

CFM [L/s]	1800 [850]	2200 [1038]	2600 [1227]	3000 [1416]	3400 [1605]	3800 [1793]	4200 [1982]	4600 [2171]	5000 [2360]
Electric Heater 20KW, 30KW	.060 [.015]	.100 [.025]	.140 [.034]	.160 [.040]	.230 [.057]	.320 [.080]	.410 [.102]	.500 [.124]	.600 [.150]
Mixing Box (R/A Damper Open)	.006 [.001]	.008 [.002]	.012 [.003]	.024 [.006]	.038 [.009]	.053 [.013]	.068 [.017]	.080 [.020]	.095 [.024]
Discharge Grille (Set Max. Open)	.008 [.002]	.011 [.003]	.015 [.004]	.020 [.005]	.025 [.006]	.031 [.008]	.039 [.010]	.046 [.012]	.055 [.014]
Inlet Grille	.008 [.002]	.010 [.002]	.014 [.003]	.020 [.005]	.026 [.006]	.032 [.008]	.039 [.010]	.049 [.012]	.058 [.014]
Discharge Plenum	.02 [.005]	.04 [.010]	.05 [.012]	.065 [.016]	.085 [.021]	.100 [.025]	.120 [.030]	.150 [.037]	.180 [.045]

3.12.4 SELECTING THE PROPER BLOWER DRIVE & MOTOR SHEAVE SETTING

To select the proper blower drive, the following information is required.

- Target air-flow in CFM or L/s
- Total static pressure of the duct system in inches of water or kPa
- Component Resistance (See Section 3.12.3)

Add the total static pressure of the duct system to the component resistance to determine the External Static Pressure (E.S.P.) that the air-handler must work against. Locate the target CFM [L/s] row on the air-flow performance table and move to the right along that row to the correct E.S.P. column. If the target CFM and E.S.P. are between the values shown on the table, it will be necessary to interpolate between rows and lines.

There are heavy lines dividing blower drives from left to right with the "R" drive being everything left of the first heavy line, "S" drive being for everything between the 1st and 2nd heavy lines, "T" drive being for everything between the 2nd and 3rd heavy lines, and so forth.

Once the correct blower drive is determined, confirm the air-handler being installed has the correct drive package or can be converted to the correct drive with field supplied sheaves and belt(s). In some cases, a motor change is also required for field supplied blower drives. See Section 3.12.5 for more details on field supplied blower drives.

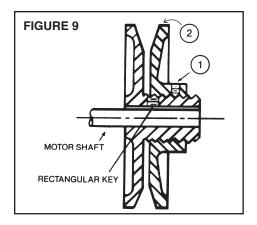
Determine the correct blower RPM from the air-flow performance chart at the intersection of the target air-flow and E.S.P. Then refer to the Blower Package Data table to determine the correct setting in turns open for the variable pitch motor sheave. The variable pitch motor sheave can be adjusted in half turns to provide finer adjustments of the blower RPM if needed. Adjust the variable pitch motor sheave to the correct setting using the instructions found in Section 3.12.6.

3.12.5 FIELD SUPPLIED BLOWER DRIVES

For applications where the blower drive packages available from the factory cannot provide enough External Static Pressure (E.S.P.), the motor sheave and/or blower sheave and the belt(s) can be changed to a factory authorized optional field supplied blower drive that will extend the E.S.P. range of the air-handler. Please note that In some cases, a higher horsepower motor may have to be substituted for the factory motor per the specifications in the Blower Package Data table. Factory authorized field supplied blower drive specifications are provided in the Blower Package Data table and the air-flow performance tables include data for the factory authorized field supplied blower drives.

IMPORTANT: Do not deviate from the specifications for the factory authorized field supplied blower drive packages to assure the motor is not overloaded and to assure that a known air-flow level can be achieved.

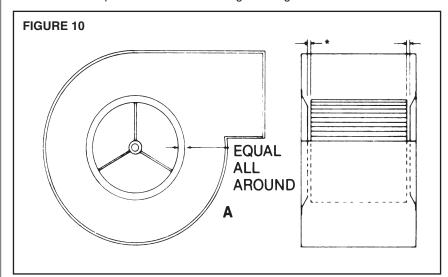
3.12.6 ADJUSTING THE VARIABLE PITCH MOTOR SHEAVE


The adjustable pitch sheave which is mounted on the motor shaft controls the fan speed. To adjust the fan speed refer to figure at right, proceed as follows:

- a. Loosen the set screw, item 1.
- b. Rotate the adjustable sheave, item 2, to the desired position.
- c. Lock the adjustable sheave in place by tightening the set screw, item 1.

NOTE: The adjustable sheave is not to be used to adjust belt tension.

BEFORE MAKING FAN ADJUSTMENTS, BE SURE THE MAIN ELECTRICAL DISCONNECT SWITCH IS IN THE "OFF" POSITION TO PREVENT POSSIBLE INJURY DUE TO ACCIDENTAL OPERATION OF THE MOTOR.


3.12.7 DRIVE BELT ALIGNMENT & ADJUSTMENT

Place belt on the groove of the blower sheave and motor sheave to obtain the approximate alignment and belt tension. Remove the belt and align the blower sheave and motor sheave using a straight edge. When both sheaves are properly aligned, re-install belt. Do not force or pry the belt onto the sheaves. With the belt in place, adjust so that all the slack is on one side of the drive. The belt should have from 3/4" to 1" [19 to 25 mm] of slack at 3 lbs. [21 kPa] pressure. Adjust the belt to this tension, by raising or lowering the swing base via the adjusting rods and nuts.

4.0 START-UP

4.1 PRE-START CHECKLIST

- 1. Leak test entire system.
- 2. Check motor mounting to make sure all nuts are tight.
- Check motor and blower sheaves to make sure they are in proper alignment and set screws are tight.
- 4. Check belt tension—belts should be fairly tight for the initial "start-up".
- 5. Check bearing—collar set screws on blower shaft to make sure they are tight.
- Ball type bearings are factory lubricated and do not require additional grease before starting.
- 7. Rotate blower shaft by hand to be sure it is free.
- 8. Check motor and blower rotation.
- 9. Check all screws, bolts, set screws and piping connections for tightness.
- 10. Check drain.
- 11. Insure that filters are in place.
- 12. Insure all outdoor unit service valves are open.
- 13. Be sure that electrical controls and motors are properly wired and fused in accordance with applicable codes.
- 14. Check wheel position in blower housing. See Figures 10A and 10B.

4.2 SYSTEM START-UP & OPERATIONAL CHECK-OUT

- Once everything on the Pre-Start Check-List has been confirmed, turn the electrical power disconnect on and adjust the thermostat to call for continuous fan operation. Confirm the blower has the correct rotation and is circulating air in the duct system.
- If the blower is running backwards, disconnect power to the unit and switch two of the motor leads in the junction box to reverse the motor rotation. Restore electrical power to the unit and confirm proper blower rotation.
- Confirm the blower is turning the correct RPM using a strobe light or other device capable of measuring RPM.
- Confirm the full load motor amps listed on the unit data plate are not being exceeded by more than the 15% service factor rating of the motor.
- If the blower is unusually noisy, disconnect power to the unit and check for improper alignment of the blower wheel or belt or for something loose.
- If field installed accessories have been installed, confirm proper functioning of those accessories.

4.3 CHECKING INDOOR AIR-FLOW RATE

4.3.1 ESTIMATING AIR-FLOW RATE USING EXTERNAL STATIC PRESSURE

A common method of checking indoor is to measure the external static pressure that the air-handler is working against and then referring to the air-flow data in Section 3.12. Measuring external static pressure to a high degree of precision in the field is challenging, so keep in mind that the air-flow rate determined by this method is an estimate, but is accurate enough for all practical purposes.

To determine external static pressure, the static pressure should be measured in inches of water column across the air-handler using an incline manometer, digital static pressure meter, or a Magnahelic. The static pressure inside the return plenum should be measured as close to the air-handler as possible and must be measured between any external filter rack and the unit so the pressure drop across the filter is accounted for. The static pressure inside the supply plenum should be measured at a point about half-way between the air-handler and the first elbow or the end of the plenum. Total external static pressure is the sum of the return and supply plenum static pressures. Even though the return plenum static pressure, ignoring the negative pressure, it must be added to the supply plenum static pressure, ignoring the negative sign. The supply and return plenum static pressure tubing can also be connected to both pressure ports of the pressure measuring device which will automatically add the two pressures together.

4.3.2 ESTIMATING AIR-FLOW RATE USING ELECTRIC HEAT TEMPERATURE RISE

If the air-handler is equipped with an electric heater, the air-flow can be estimated using the air temperature rise across the air-handler with the heater and blower both energized once the unit has run long enough for the temperatures to stabilize. As with determining air-flow rate using external static pressure, the air-flow rate determined by this method is an estimate, but is accurate enough for all practical purposes. Measure the return air temperature as close to the unit as possible and the supply air temperature about half way from the air-handler to the first elbow or end of the supply plenum. Use the following formula to calculate air-flow rate once the temperature rise is determined.

CFM = Heating BTUH / (Elevation Factor × Temp Rise °F)

 $L/s = (895 \times Heating \, kW) / (Elevation Factor \times Temp Rise ^{\circ}C)$

Note: Refer to Sections 4.3.3 and 4.3.4 to determine Heating Capacity and the following chart for Elevation Factor.

Elevation -ft [m]	Elevation Factor
Sea Level	1.08
500 [152]	0.98
1000 [305]	0.96
1500 [451]	0.95
2000 [610]	0.93
2500 [762]	0.91
3000 [914]	0.90
3500 [1067]	0.88
4000 [1219]	0.86
5000 [1524]	0.83
6000 [1829]	0.83
7000 [2134]	0.77
8000 [2438]	0.74
9000 [2743]	0.72
10000 [3048]	0.69

4.3.3 CORRECTING ELECTRIC HEAT KW FOR VOLTAGE

The actual electric heat kW varies with the supply voltage. Use the following formula to correct the heater rated kW at voltages other than rated voltage.

Actual kW = Rated kW × (Actual Voltage² / Rated Voltage²).

4.3.4 CALCULATING ELECTRIC HEAT CAPACITY IN BTUH

Use the following formula to convert heater kW to heating capacity in BTUH.

BTUH Capacity = $kW \times 3412$ (Where 3412 = BTUH per kW)

4.4 CHECKING REFRIGERANT CHARGE

System refrigerant charging should only be performed after the indoor air-flow is confirmed to be correct for the application. Once the air-flow is confirmed, refer to the manufacturer's outdoor unit charging chart and installation manual for the proper charging procedure for the system.

4.5 SEQUENCE OF OPERATION

4.5.1 COOLING & HEAT PUMP HEATING MODES

When the 2-stage thermostat calls for 1st stage of cooling or heat pump heating and the thermostat fan setting is set to the AUTO position, the G signal from the thermostat causes the Variabe Frequency Drive (VFD) to ramp the motor to the low speed air-flow level (37.5 Hz) which is 63% of full air-flow. If the thermostat fan setting is set on the ON position (continuos fan), the motor will already be operating at the low speed air-flow level when there is a call for 1st stage cooling or heat pump heating.

If the 2-stage thermostat calls for 2nd stage of cooling or heat pump heating, the Y signal from the thermostat will cause the VFD to ramp the motor to the high speed air-flow level (60 Hz). As the thermostat cycles between stages, the VFD and motor will cycle between the low and high speed air-flow levels.

When the call cooling or heat pump heating at the thermostat is satisfied or the thermostat is turned to the OFF position, the VFD will ramp down to 0 Hz and the motor will stop if the thermostat fan settings is set to AUTO position. If the thermostat fan setting is set to the ON position (continuos fan), the VFD will continue to drive the motor at the low speed level (37.5 Hz).

4.5.2 ELECTRIC HEAT MODE

When the thermostat calls for the 1st stage of heat, the 1st stage heater contactor (HC1) in the electric heater kit closes which energizes the 1st stage heater elements. If the thermostat fan setting is set to the AUTO position, the G signal from the thermostat causes the VFD to ramp the motor up to the high speed air-flow level (60Hz). If the thermostat fan setting is set to the ON (continuous fan) position, then the VFD will ramp the motor from low speed air-flow (37.5 Hz) to high speed air-flow (60Hz).

If the thermostat calls for the 2nd stage of heat, the 2nd stage heater contactor (HC2) in the electric heater kit closes which energizes the 2nd stage heater elements. The heater will then cycle between the 1st and 2nd stages of heat at the direction of the thermostat.

When the call for heat at the thermostat is satisfied or the thermostat is turned to the OFF position, the heater contactor(s) open and de-energize the electric heater elements. If the thermostat fan setting is set to the AUTO position, the VFD will ramp down to 0 Hz and the motor will stop. If the thermostat fan setting is set to the ON (continuous fan) position, the VFD will ramp down to the low speed air-flow level (37.5 Hz) until the next call for electric heat.

4.5.3 SUPPLEMENTAL HEATING DURING THE HEAT PUMP HEATING & DEFROST MODES

Should the room temperature continue to fall when the system is operating in the heat pump heating mode, the thermostat will energize supplemental electric heat as required if an electric heater kit has been installed.

If the purple pigtail connected to the "D" terminal on the outdoor unit defrost control is connected to the W1 input (black pigtail) on the electric heater kit, the 1st stage of electric heat will be energized during the defrost cycle. This prevents cold air from being discharged from the supply registers during the defrost cycle. For the most economical operation when discharge air temperature during defrost is not an issue, do not make this connection.

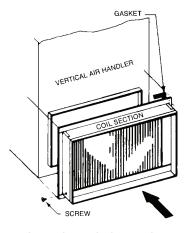
4.5.4 EMERGENCY HEAT (HEAT PUMP)

If heat pump thermostat is set to the "Emergency Heat" mode, the outdoor unit will be prevented from operating and heat will be provided solely by the electric heater. The electric heater elements and indoor blower motor will be energized any time there is a call for heat with no compressor and outdoor fan operation. A jumper should be installed between the W1 and E terminals on the thermostat sub-base so a call for emergency heat will be transferred to the 1st stage of heat of the thermostat. The indoor blower will cycle on and off with the electric heater elements when the thermostat fan setting is set to the "auto" mode.

4.5.5 THERMOSTAT FAN SETTING

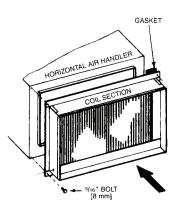
If the thermostat "FAN" setting is adjusted to the "AUTO" position, the indoor blower motor will only operate when there is a call for cooling or heating. If the setting is adjusted to the "ON" position, the indoor blower motor will operate continuously at the low speed air-flow level.

5.0 FIELD INSTALLED ACCESSORIES & KITS


RXHE ELECTRIC HEATER KIT	

ACCESSORY DESCRIPTION	MODEL NUMBER	SIZE USED ON	NET WEIGHT (LBS) [kg]	
Hot Water Coil	RXHC-C74W	090,120	200 [91]	
Hot Water Con	RXHC-C76W	150,180,240	USED ON (LBS) [kg] 090,120 200 [91] 150,180,240 200 [91] 090,120 200 [91] 150,180,240 200 [91] 090,120 90 [41] 150,180,240 117 [53] 090,120 9 [4] 150,180,240 12 [5] 090,120 15 [7] 150,180,240 23 [10] 090,120 38 [17] 150,180,240 62 [28] 090,120 120 [54] 150,180,240 195 [88] 090,120 75 [34] 090,120 75 [34] 150,180,240 90 [41]	
Steam Coil	RXHC-C74S	090,120	200 [91]	
Steam Con	RXHC-C76S	150,180,240	200 [91]	
Filtor Frama Cail	RXHF-B74A	090,120	90 [41]	
Filter Frame Coil	RXHF-B76A	150,180,240	117 [53]	
Inlet Grille Kit	RXHG-C74A	090,120	9 [4]	
Inlet Grille Kit	RXHG-C76A	150,180,240	12 [5]	
Discharge	RXHG-C74B	090,120	15 [7]	
Grille Kit	RXHG-C76B	USED ON (LBS) [kg] 090,120 200 [91] 150,180,240 200 [91] 090,120 200 [91] 150,180,240 200 [91] 150,180,240 200 [91] 150,180,240 117 [53] 090,120 9 [4] 150,180,240 12 [5] 090,120 15 [7] 150,180,240 23 [10] 090,120 38 [17] 150,180,240 62 [28] 090,120 120 [54] 150,180,240 195 [88] 090,120 75 [34]		
Discharge	RXHL-C74B	090,120	38 [17]	
Plenum Kit	RXHL-C76B	USED ON (LBS) [kg] 090,120 200 [91] 150,180,240 200 [91] 090,120 200 [91] 150,180,240 200 [91] 090,120 90 [41] 150,180,240 117 [53] 090,120 9 [4] 150,180,240 12 [5] 090,120 15 [7] 150,180,240 23 [10] 090,120 38 [17] 150,180,240 62 [28] 090,120 120 [54] 150,180,240 195 [88] 090,120 75 [34] 090,120 75 [34] 150,180,240 90 [41]		
Mining Day	RXHM-BC74H	090,120	120 [54]	
Mixing Box	RXHM-BC76H	150,180,240	195 [88]	
	RXHE-DE020*A	090,120	75 [34]	
Auxiliary	RXHE-DE030*A	090,120	75 [34]	
Heater Kit	RXHE-CE030*C	150,180,240	90 [41]	
	RXHE-CE040*C	150,180,240	98 [44]	

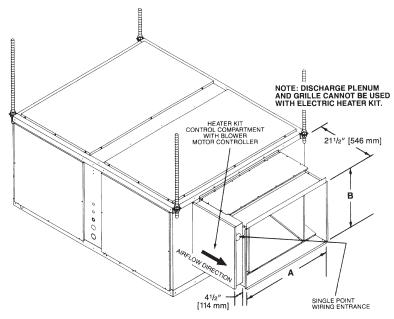
NOTE: *Designates "C", "D" or "Y" Voltage


[] Designates Metric Conversions

HOT WATER OR STEAM COILS

(090, 120) RXHC-C74W RXHC-C74S or (150, 180, 240) RXHC-C76W RXHC-C76S

> (090, 120) RXHC-C74W RXHC-C74S or (150, 180, 240) RXHC-C76W RXHC-C76S



5.1 ELECTRIC RESISTANCE HEATER KITS

OPTIONAL ELECTRICAL HEATER KIT SHOWN INSTALLED IN HORIZON-TAL POSITION AND CONNECTED DIRECTLY TO THE AIR HANDLER. THE HEATER KIT MAY ALSO BE INSTALLED WITH THE AIR HANDLER SET IN THE VERTICAL POSITION. IN EITHER POSITION THE HEATER KIT CON-TROL COMPARTMENT MUST BE ON THE LEFT SIDE FACING THE AIR DIS-CHARGE OPENING.

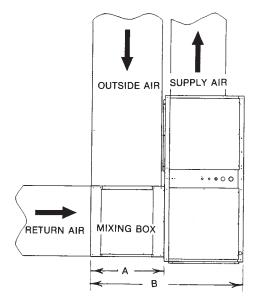
AUXILIARY HEATER KIT

MODEL NO.	IN. [mm]				
WODEL NO.	Α	В			
RXHE-DE***A	20 [508]	20 [508]			

[] Designates Metric Conversions

5.2 MIXING BOX KITS

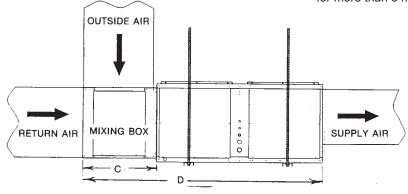
ACCESSORY MODEL RXHM-A74F


COOLING SEASON—Thermostat set at "Cool" and "Fan Auto," outside air damper goes to "minimum fresh air" position when cooling thermostat closes, energizing mechanical cooling. When cooling thermostat is satisfied, mechanical cooling is de-energized, and outside air damper closes.

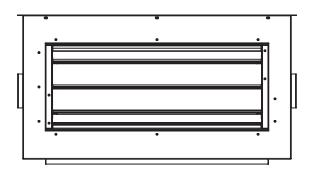
INTERMEDIATE SEASON—Same as for cooling season, except that cooling thermostat closes, starting indoor blower motor, the enthalpy control, mounted on outside air, determines if "free" cooling or mechanical cooling should be utilized. If outside air conditions are suitable for cooling, the mechanical cooling remains off and the mixed air controller modulates the damper motor to assume the proper damper position to maintain mixed air setting. If outside conditions are not suitable for cooling, then the dampers go to "minimum fresh air" position and mechanical cooling is energized.

HEATING SEASON—Damper always stays at "minimum fresh air" position while fan motor is operating. Outside air damper closes when blower motor is off. "Minimum fresh air" position must not allow mixed air temperatures to air handler below 50°F. during heating seasons.

CAUTION: Because of the possibility of freeze damage, it is not recommended that hot water or steam coils be used with the mixing box accessory, unless provision is made to shut-off the outside air duct 100% during freezing conditions.

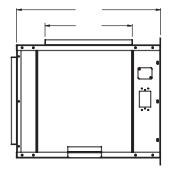

Another possible system enhancement would be to install an air proving switch in the air handler supply duct wired in series with the compressor contactor coil (24V) which would lock out the compressor in the event of air flow failure.

VERTICAL A	PPLICATION
Α	В
27	54
HORIZONTAL	APPLICATION
С	D
27	79


NOTE:

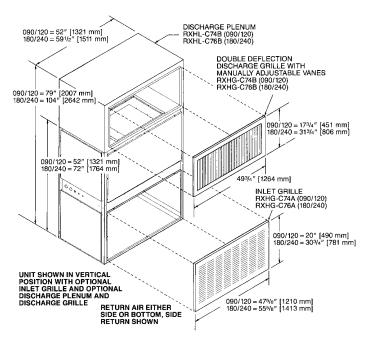
The bottom of the air handler should be sloped in two planes that pitch the condensate to the drain connection. The drain pan shall not leave puddles larger than 2 inches in diameter and ¹/₈ inch deep for more than 3 minutes.

5.2 MIXING BOX KITS (continued)


Field - Installed Mixing Box Dimensions

TOP VIEW

FRONT VIEW


SIDE VIEW

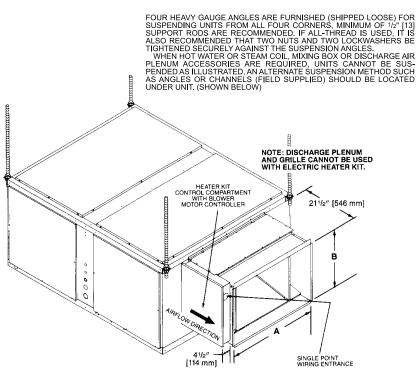
MODEL NO.	AIR HANDLER	FLANGED DU	IN. [mm]	
MIODEL NO.	SIZES USED ON LENGTH IN. [m		WIDTH IN. [mm]	"X"
RXHMBC-74H	090, 120	42 [1067]	16 7/8 [1229]	27 [686]
RXHMBC-76H	150, 180, 240	48 3/8 [1229]	22 [559]	32 [813]

5.3 DISCHARGE PLENUM, DISCHARGE GRILLE, & INLET GRILLE KITS

AIR HANDLER ACCESSORIES (con't)

UNIT WITH ACCESSORIES 7.5 THROUGH 10 NOMINAL TONS [26 THROUGH 35 kW]

DOUBLE DEFLECTION DISCHARGE GRILLE

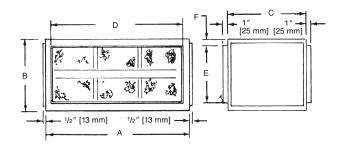

MODEL NO.	AIR HANDLER SIZES USED ON	NOMINAL CFM [L/s]	FT. [m] OF THROW
RXHG-C74B	090	3000 [1416]	0° DEFLECTION - 43' [13.1] 22° DEFLECTION - 37' [11.3] 45° DEFLECTION - 22' [6.7]
RXHG-C/4B	120	4000 [1888]	0° DEFLECTION - 53' [16.2] 22° DEFLECTION - 46' [14] 45° DEFLECTION - 27' [8.2]
RXHG-C76B	180	6000 [2831]	0° DEFLECTION - 52' [15.8] 22° DEFLECTION - 36' [11] 45° DEFLECTION - 18' [5.5]
KANG-C/6B	240	8000 [3775]	0° DEFLECTION - 65' [19.8] 22° DEFLECTION - 45' [13.7] 45° DEFLECTION - 22' [6.7]

TYPICAL APPLICATION 7.5, 10, 15 AND 20 NOMINAL TONS [26, 35, 53 AND 70 kW]

OPTIONAL ELECTRICAL HEATER KIT SHOWN INSTALLED IN HORIZONTAL POSITION AND CONNECTED DIRECTLY TO THE AIR HANDLER. THE HEATER KIT MAY ALSO BE INSTALLED WITH THE AIR HANDLER SET IN THE VERTICAL POSITION. IN EITHER POSITION THE HEATER KIT CONTROL COMPARTMENT MUST BE ON THE LEFT SIDE FACING THE AIR DISCHARGE OPENING.

MODEL NO.	AIR HANDLERS	IN. [mm]			
WIODEL NO.	SIZES USED ON	Α	В		
RXHE-DE***A	090, 120	20 [508]	20 [508]		
RXHE-CE****C	150,180,240	36 [914]	24 [610]		

THE BOTTOM OF THE AIR HANDLER SHOULD BE SLOPED IN TWO PLANES THAT PITCH THE CONDENSATE TO THE DRAIN CONNECTION. THE DRAIN PAN SHOULD NOT LEAVE PUDDLES LARGER THAN 2 INCHES IN DIAMETER AND 1/8 INCH DEEP FOR MORE THAN 3 MINUTES.

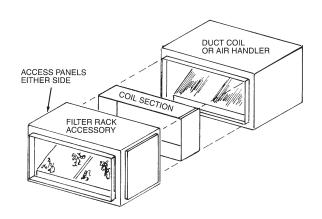


[] Designates Metric Conversions

5.4 FILTER FRAME KITS

The filter rack accessory can be connected directly to the hot water/steam coil accessory.

MODEL IN. [mm]								
NO.	A B C D E							
RXHF-B74A	51 ¹ / ₂ [1308]	24 [610]	25 ¹ / ₈ [638]	47 ³ / ₈ [1203]	19 ⁷ /8 [505]	2 ¹ / ₁₆ [52]		

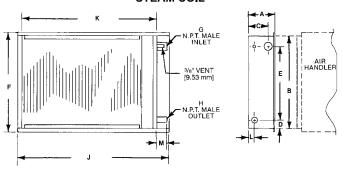


MODEL NO.	FILTER SIZE (QTY.) TYPE
RXHF-B74A	16×20×1 (4) Disposable 20×20×1 (2) Disposable

[] Designates Metric Conversions

FILTER PRESSURE DROP:

MODEL NO.	CFM [L/s] × 1000 [472]								
WIODEL NO.	2	3	4	5	6	7	8	9	10
RXHF-B74A	.01 [2]	.02 [4]	.03 [7]	.07 [16]	.10 [22]	.15 [33]	_		



5.5 HOT WATER & STEAM COILS

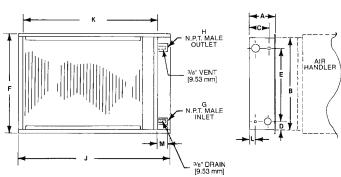
PHYSICAL SPECIFICATIONS

NOMINAL TONS [kW]	FINNED HEIGHT- IN. [mm]	FINNED LENGTH- IN. [mm]	FACE AREA FT ² [m ²]	CIRCUITS & TUBES HIGH	
71/2 [26.38]-10 [35.17]	18 [457]	40 [1016]	5.0 [.46]	12	
15 [52.75]-20 [70.34]	27 [686]	48 [1219]	9.0 [.84]	18	

STEAM COIL

GROSS COIL PERFORMANCE

NOMINAL	NOMINA	L BTUH	NOMINAL	VELOCITY FPM		
TONS [kW]	STEAM	WATER	CFM [L/s]			
71/2 [26.38]	242,500	185,000	3,000 [1416]	600		
10 [35.17]	285,000	240,000	4,000 [1888]	800		
15 [52.75]	465,000	375,000	6,000 [2832]	667		
20 [70.34]	540,000	464,000	8,000 [3776]	888		


- Entering air temperature @ 60°F
 Entering steam @ 5 PSIG
 Entering water @ 200°F

- CFM 4. Face velocity = Face Area

STEAM COIL COIL DIMENSIONS—INCHES [mm]

MODEL	NOMINAL TONS [kW]	Α	В	С	D	E	F	G	Н	J	K	L	М
RXHC-C74	7 ¹ / ₂ [26.38]- 10 [35.17]	9 ¹ / ₁₆ [230]	21 ³ / ₈ [543]	5 ³ / ₈ [137]	3 ³ / ₁₆ [81]	15 [381]	24 [610]	1 ¹ / ₂ [38]	1 ¹ / ₄ [32]	51 ¹ / ₂ [1308]	47 ⁵ /8 [1210]	2 ¹³ / ₁₆ [71]	3 ¹ / ₄ [83]
RXHC-C76S	15 [52.75]- 20 [70.34]	9 ¹ / ₁₆ [230]	30 ⁷ / ₈ [784]	5 ³ /8 [137]	3 ³ / ₁₆ [81]	24 [610]	35 [889]	2 [51]	1 ¹ / ₂ [38]	59 ¹ / ₂ [1511]	55 ⁵ /8 [1413]	2 ¹³ / ₁₆ [71]	3 ¹ / ₂ [89]

HOT WATER COIL

HOT WATER COIL DIMENSIONS—INCHES [mm]

MODEL	NOMINAL TONS [kW]	Α	В	С	D	E	F	G	Н	J	K	L	М
RXHC-C74W	71/2 [26.38]-	9 ¹ / ₁₆	21 ³ / ₈	5 ³ / ₈	3 ³ / ₁₆	15	24	1 ¹ / ₄	1 ¹ / ₄	51 ¹ / ₂	47 ⁵ /8	2 ¹³ / ₁₆	3
	10 [35.17]	[230]	[543]	[137]	[81]	[381]	[610]	[32]	[32]	[1308]	[1210]	[71]	[76]
RXHC-C76W	15 [52.75]-	9 ¹ / ₁₆	30 ⁷ /8	5 ³ /8	3 ³ / ₁₆	24	35	1 ¹ / ₂	1 ¹ / ₂	59 ¹ / ₂	55 ⁵ /8	2 ¹³ / ₁₆	3 ¹ / ₄
	20 [70.34]	[230]	[784]	[137]	[81]	[610]	[889]	[38]	[38]	[1511]	[1413]	[71]	[83]

[] Designates Metric Conversions

6.0 MAINTENANCE

For continuing high performance, and to minimize possible equipment failures, it is essential that periodic maintenance be performance on this equipment. This section provides general guidelines on what items require periodic maintenance and the recommended frequency for maintenance.

6.1 AIR-FILTERS

Check the system filter every 30-90 days or as often as found to be necessary depending on the application. Clean or replace filters if found to be obstructed. New filters are available from a local distributor or industrial supply store.

A qualified installer, service agency or HVAC professional should change the filters or instruct the building owner's maintenance personnel on how to access and change/ clean the filters and how often this maintenance must should be performed.

IMPORTANT: Do not operate the system without a filter in place as this will result in lint and contaminants accumulating on the coil resulting in reduced performance and possible icing of the coil.

6.2 COIL, DRAIN PAN, DRAIN LINE

Inspect the indoor coil, drain pan, and drain line once each year for cleanliness and clean as necessary. Remove the filters and check the return side of the coil for lint and contaminants and flashlight.

IMPORTANT: Do not use caustic household drain cleaners with bleach in the condensate pan or near the indoor coil. Drain cleaners will quickly damage the indoor coil and condensate pan.

6.3 BLOWER LUBRICATION & CLEANING

The ball bearing motor is pre-lubricated and does not require the addition of grease at time of installation. However, periodic cleaning out and renewing the grease in ball bearings may be necessary. Please note that extreme care must be exercised to prevent foreign matter from entering the bearing.

Over time, dust and contaminants may collect on the motor, especially if the air-filters have not been replaced or cleaned on a regular basis. The motor should be inspected annually and the exterior surface should be cleaned as needed and the air vents vacuumed out to remove any obstruction.

6.4 BLOWER SHAFT BEARINGS, BEARING COLLAR SET SCREWS, BLOWER WHEEL, SHEAVES, & BLOWER DRIVE BELT(S)

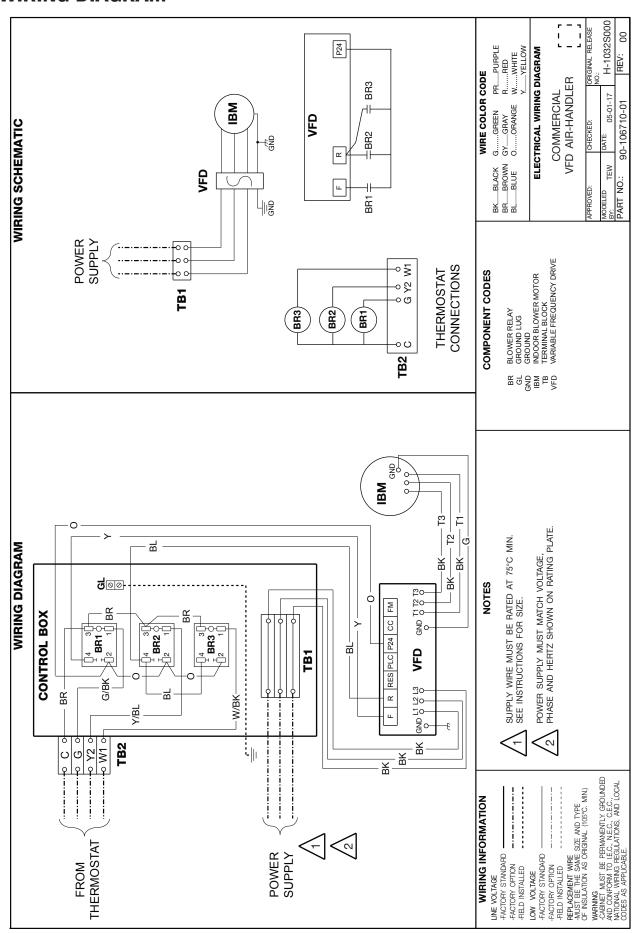
Inspection of the blower shaft bearings, bearing collar set screws, blower wheel, and the blower drive belt(s) is recommended every 6 months. Check bearing-collar set screws on the blower shaft to make sure they are still tight. Check the blower shaft bearings for smooth operation and lubricate or replace bearings if necessary. Inspect the blower wheel for accumulation of lint and contaminants or damage. Remove blower wheel and clean or replace if necessary. Inspect the motor and blower sheaves for excessive wear or damage and check set-screws or D bushing bolts for tightness. Replace sheaves and tighten screws and bolts as necessary. Check alignment of sheaves and adjust if necessary. Inspect the blower drive belt(s) for wear and proper tension. Replace the belt(s) and re-adjust the tension if necessary.

6.5 MOTOR REPLACEMENT

Only replace the blower motor with one with the equivalent voltage, horsepower rating, amp rating, and NEMA frame size to maintain factory performance and reliability.

6.6 REPLACEMENT PARTS

Any replacement part used to replace parts originally supplied on equipment must be the same as or an approved alternate to the original part supplied. The manufacturer will not be responsible for replacement parts not designed to physically fit or operate within the design parameters the original parts were selected for.


These parts include but are not limited to: Heater controls, heater limit controls, heater elements, motor, motor capacitor, blower contactor, blower wheel, indoor coil, sheaves, blower shaft, bearings, and sheet metal parts.

When ordering replacement parts, it is necessary to order by part number and include with the order the complete model number and serial number from the unit data plate. (See Parts List for unit component part numbers).

7.0 DIAGNOSTICS

Problem	Possible Cause (Suggested Fix)
Blower motor will not operate or no air-flow	 Failed run capacitor (H voltage only) Failed motor (replace) Loose wiring connection or broken wire (check connections & wiring) Failed transformer on outdoor unit (replace) Circuit breaker or fuse is turned off or has tripped due to overcurrent or shorted circuit (check for shorts, reset breaker) Belt loose, broken, or off (adjust or replace belt) Corrupted VFD program (reprogram) Failed VFD (replace)
Excessive vibration	Blower wheel out of balance (replace or clean blower wheel)
Water overflowing drainpan	Plugged drain (clear drain)Unit not level (level unit)
Electric heater not heating properly or not heating at all, but blower motor is operating	 Over temperature limit has tripped (check for low air-flow) Over temperature limit has failed (replace) Contactor has failed (replace) One or more heating elements have burned out (replace)
Coil is frozen up	 System low on refrigerant charge (check for leaks and adjust charge) Dirty return air filter (replace filter) Inadequate air-flow due to incorrect blower sheave adjustment (adjust sheave to achieve proper air-flow) or excessively restrictive duct system (correct duct system) Belt loose, broken, or off (adjust or replace belt)
Excessive air-flow	 Incorrect blower sheave adjustment (adjust sheave to achieve proper air-flow)
Water blow-off from coil	 Excessive air-flow (adjust sheave to achieve proper air-flow) Contaminants on coil fans (clean coil) Damaged coil fins (comb out fins or replace coil)
TXV not controlling properly	 TXV bulb not positioned correctly or clamp not tight (Check position of TXV sensing bulb and tightness of clamp) Failed TXV (replace) Plugged TXV inlet screen (clean or replace screen or replace TXV)

8.0 WIRING DIAGRAM

97B0136N01 | CM 0418

7300 S.W. 44th Street Oklahoma City, OK 73179 Phone: 405-745-6000 Fax: 405-745-6058 climatemaster.com

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time for order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products.